首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of histones on the release of apoptogenic factors has been studied. The incubation of H1 histone or total histones with mitochondria from a rat liver results in their binding to mitochondria. Furthermore, histones induce the release of cytochrome c and a number of other proteins from the intermembranous space of mitochondria. Proteins released from mitochondria in the presence of histones exhibit apoptogenic activity and induce internucleosomal DNA fragmentation of thymus nuclei. The cytotoxic effect of histones is probably mediated by apoptogenic proteins, which are released from intermembranous space as a response of histone binding to mitochondria.  相似文献   

2.
3.
 应激时,线粒体通透性增高可导致位于线粒体膜间的致凋亡因子释放入细胞质,胱天蛋白酶 (caspase)激活,以及细胞死亡.但线粒体通透性增高的确切机制尚不清楚.许多研究表明,线粒体通透性增高过程需要Bcl-2家族蛋白中促凋亡Bax亚家族蛋白,主要是Bax和Bak的激活;该家族中其它蛋白可对Bax和Bak进行调节.但最近的研究表明,其它非Bcl-2家庭蛋白的蛋白质包括抑制因子和激活因子,也可对线粒体通透性增高过程进行调节.此外,应激时线粒体脂质重新分布,对于线粒体膜通透性增高过程也起重要作用.  相似文献   

4.
The life cycle of a cell is partly regulated by the programmed cell death (PCD) process. From development to demise, a cell's PCD process must respond to external signals and internal factors mediated by mitochondria. Previous studies show that the release of histones into the cytosol caused by DNA damage or loss of nuclear integrity is correlated with apoptosis in mammalian cells. These released histones bind to mitochondria and permeabilize its inner and outer membranes, which causes the release of cytochrome c into the cytosol that leads to caspase activation and the demise of the cell. Owing to the high conservation of histones, we hypothesize that histone‐mediated cytochrome c release from mitochondria may be conserved across a wide range of eukaryotes. We investigated this histone–mitochondrial interaction in cauliflower using density‐gradient purified mitochondria and exogenous histones from a crude histone fraction, then added the exogenous histone fractions to the purified cauliflower mitochondria and analyzed the mitochondrial pellets and supernatants by immunoblotting against cytochrome c and H3. Our data clearly shows that histone‐enriched fractions elicited cytochrome c release from mitochondria, and that mitochondria bind exogenous histone H3.  相似文献   

5.
About 1,300-fold purification of poly(adenosine diphosphate ribose) polymerase has been achieved from the extract of bovine thymus with a recovery of 10 to 20%. The final preparation has a purity of 99%, and the enzyme is composed of a single peptide with a molecular weight of 130,000. The purified enzyme required NAD+, Mg2+, a thiol compound, DNA, and histones for full activity. Whereas DNA is essential for activation of the enzyme, histones are not. The observed stimulation of the reaction by histones is shown to be due to masking of the inhibitory effect of contaminating denartured DNA in native DNA preparation. The concentration of DNA required for half-maximal enzyme activity (apparent Km for DNA) is proportional to the concentration of enzyme in the reaction mixture. The minimum estimation of the number of nucleotide pairs of DNA required for half-maximal activation of one enzyme molecule is 220 to 240 for bulk of calf thymus DNA, while the value is 10 for a calf thymus DNA fraction, "active DNA," which was separated from the enzyme fraction in a stage of the purification. These results suggest that the enzyme is activated by binding to a specific site on calf thymus DNA. The apparent Km for NAD+ and the maximum velocity of the enzyme are estimated to be 60 micrometer and 0.91 mumolper min per mg, respectively.  相似文献   

6.
Smith DJ  Ng H  Kluck RM  Nagley P 《IUBMB life》2008,60(6):383-389
Mitochondria play a key role in death signaling. The intermembrane space of these organelles contains a number of proteins which promote cell death once they are redistributed to the cytosol. The formation of pores in the outer membrane of mitochondria defines a gateway through which the apoptogenic proteins pass during death signaling. Interactions between pro-apoptotic and pro-survival members of the Bcl-2 family of proteins are decisive in the initiation of pore opening. While the specific composition of the pore in molecular terms is still subject to debate and continuing investigation, it is recognized functionally as a passive channel which not only allows egress of proteins to cytosol but also entry in the reverse direction. A variety of constraints may restrict the release of proteins from the intermembrane space to the cytosol. These include trapping in the intercristal spaces formed by the convoluted invaginations of the inner membrane, binding of proteins to the inner membrane or to other soluble proteins of the intermembrane space, or insertion of proteins into the inner membrane. There is a corresponding variety of mechanisms that facilitate release of apoptogenic proteins from such entrapment. Morphological changes that expand the inner membrane enable proteins to be released from enclosure in intercristal spaces, allowing these proteins access to the mitochondrial gateway. Specific cases include cytochrome c molecules bound to inner membrane cardiolipin and released upon oxidation of that lipid component. Further, AIF that is embedded in the inner membrane is released by proteases (caspases or calpains), which enter from the cytosol once the outer membrane pore has opened. The facilitation (or restriction) of apoptogenic protein release through the mitochondrial gateway may provide new opportunities for regulating cell death.  相似文献   

7.
It has been suggested in a number of investigations that the high vulnerability of mitochondrial DNA to reactive oxygen species and other damaging agents is due to the absence in mitochondria of histones complexed with DNA. In the present study it was shown that DNA-binding proteins of mitochondrial nucleoids were able to shield mitochondrial DNA from X-ray radiation and hydrogen peroxide, as nuclear histones did. Mitochondria, mitochondrial nucleoid proteins, and histones were isolated from mouse liver cells. The degree of damage to or protection of mitochondrial DNA was assessed from the yield of its PCR amplification product. The in vitro experiments demonstrated that mouse mitochondrial DNA, when in complex with mitochondrial nucleoids or nuclear histones, was damaged much less by radiation and/or hydrogen peroxide than in the absence of these proteins and histones. No significant difference between mitochondrial nucleoid proteins and nuclear histones was revealed in their efficiency to protect mitochondrial DNA from the damaging effect of radiation and hydrogen peroxide. It is likely that the nucleoid proteins in the mitochondria shield mitochondrial DNA against the attack of reactive oxygen species, thus significantly decreasing the level of the oxidative damage to mitochondrial DNA.  相似文献   

8.
Study on the localization of proteases of mitochondrial origin   总被引:1,自引:0,他引:1  
A marked proteolytic activity against casein can be demonstrated in rat liver mitochondria. The proteases degrading casein appear distributed between a sedimentable fraction (Po) and a soluble extract (So). Part of the soluble fraction activity, which may be recovered in the mitochondrial intermembrane space, results from a contamination by lysosomal proteases and can be eliminated by previously washing the mitochondria with digitonin. The pre-exposure to digitonin causes an enhancement of the caseinolytic activity associated with the membrane fragments, proving that this activity is not due to lysosomal enzymes. When rats have been injected in vivo with the compound 48/80 which, by degranulating the mast cells prevents contamination of the mitochondrial preparations by mast cell proteases, the membrane fraction (Po) retains a caseinolytic activity of the order of 80 per cent of the control preparations. A similar value of activity is observed in the membranes of brain mitochondria, isolated by a method which removes the rare mast cells they may contain. This shows that the greater part of the caseinolytic activity associated with the rat liver membranes does not originate from mast cell granules. Liver mitochondria pre-exposed to digitonin to eliminate lysosomal contaminants, have been subfractionated into matrix, intermembrane space, inner and outer membrane. Each of the fractions exhibits a caseinolytic activity, but the largest part is localized in the inner compartments of mitochondria: the matrix and the inner membrane. The optimal pH and the sensitivity to inhibitors of the proteases in the different compartments indicate that we are dealing with distinct enzymes.  相似文献   

9.
Both physiological cell death (apoptosis) and at least some cases of accidental cell death (necrosis) involve a two-step-process. At a first level, numerous physiological or pathological stimuli can trigger mitochondrial permeability transition which constitutes a rate-limiting event and initiates the common phase of the death process. Mitochondrial permeability transition (FT) involves the formation of proteaceous, regulated pores, probably by apposition of inner and outer mitochondrial membrane proteins which cooperate to form the mitochondrial PT pore complex. Inhibition of PT by pharmacological intervention on mitochondrial structures or mitochondrial expression of the apoptosis-inhibitory oncoprotein Bcl-2 thus can prevent cell death. At a second level, the consequences of mitochondrial dysfunction (collapse of the mitochondrial transmembrane potential, uncoupling of the respiratory chain, hyperproduction of superoxide anions, disruption of mitochondrial biogenesis, outflow of matrix calcium and glutathione, and release of soluble intermembrane proteins) can entail a bioenergetic catastrophe culminating in the disruption of plasma membrane integrity (necrosis) and/or the activation and action of apoptogenic proteases with secondary endonuclease activation and consequent oligonucleosomal DNA fragmentation (apoptosis). The acquisition of the biochemical and ultrastructural features of apoptosis critically relies on the liberation of apoptogenic proteases or protease activators from the mitochondrial intermembrane space. This scenario applies to very different models of cell death. The notion that mitochondrial events control cell death has major implications for the development of death-inhibitory drugs.  相似文献   

10.
Mitochondria play an important role in the integration and transmission of cell death signals, activating caspases and other cell death execution events by releasing apoptogenic proteins from the intermembrane space. The BCL-2 family of proteins localize (or can be targeted) to mitochondria and regulate the permeability of the mitochondrial outer membrane to these apoptotic factors. Recent evidence suggests that multiple mechanisms may regulate the release of mitochondrial factors, some of which depend on the action of caspases.  相似文献   

11.

Background

Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria.

Methodology/Principal Findings

We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation.

Conclusions

We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage.  相似文献   

12.
The rat liver triiodothyronine (T3) nuclear receptor rapidly looses, after a partial purification from the nuclear extract, its ability to bind T3. We previously reported that histones, in the presence of DNA, could protect against inactivation enhancing the T3 binding site concentration and maintaining the high affinity for T3. A nuclear fraction discarded during the receptor purification (fraction A) was also found able to restore T3 binding and was analyzed. As histones + DNA, fraction A stabilized the T3 binding site from irreversible inactivation during incubation with T3, increasing its concentration while keeping the same high affinity for T3. It was active even at relatively high receptor concentration, appeared slightly more active than histones (+ DNA) in the same protein concentration range (up to 50-fold increment of T3 binding at the optimal concentration of 25 micrograms/ml) and was unaffected or slightly inhibited by DNA. Other proteins (ovalbumin, soybean trypsin inhibitor, RNAase) and rat liver cytosol were several times less effective, suggesting a major role of some nuclear constituents. The active factors in fraction A essentially belong to non-histone nuclear proteins. Fraction A was found heterogeneous regarding the molecular size and pHi of the active factors, the existence of subfractions more active on a protein concentration basis being suggested but not yet clearly evidenced. Efficient in vitro T3 binding to the isolated T3 nuclear receptor thus depends on the presence of several different nuclear constituents, histones + DNA or some non-histone proteins. Whether interactions with these constituents could modulate T3 binding within the nucleus remains to be elucidated.  相似文献   

13.
Although large-scale approaches have identified numerous mitochondrial phosphoproteins, little is known about the mitochondrial kinases and phosphatases that regulate these phosphoproteins. Here, we identify two members of the atypical dual specificity phosphatases (DSP), DSP18 and DSP21, that are localized in mitochondria. Although DSP18 is widely expressed in several mammalian tissues, DSP21 is selectively expressed in the testes. We demonstrate that DSP18 and DSP21 are targeted to mitochondria by cryptic internal localization signals. Subfractionation of mitochondria demonstrated that DSP18 is located in the intermembrane space as a peripheral membrane protein of the inner membrane. In contrast, subfractionation of rat testis mitochondria revealed DSP21 is localized to the matrix as a peripheral membrane protein of the inner membrane. Moreover, we demonstrate that a previously reported substrate for DSP18, the stress-activated protein kinase, does not localize to mitochondria in several different tissues, making it an unlikely substrate for DSP18. Finally, we show that induction of apoptosis by treatment with staurosporine causes translocation of DSP18 from the intermembrane space into the cytosol similar to other apoptogenic factors such as cytochrome c. This work rigorously demonstrates the unique location of two highly similar DSPs on opposing sides of the mitochondrial inner membrane.  相似文献   

14.
Multiple apoptotic pathways release cytochrome c from the mitochondrial intermembrane space, resulting in the activation of downstream caspases. In vivo activation of Fas (CD95) resulted in increased permeability of the mitochondrial outer membrane and depletion of cytochrome c stores. Serial measurements of oxygen consumption, NADH redox state and membrane potential revealed a loss of respiratory state transitions. This tBID-induced respiratory failure did not require any caspase activity. At early time points, re-addition of exogenous cytochrome c markedly restored respiratory functions. Over time, however, mitochondria showed increasing irreversible respiratory dysfunction as well as diminished calcium buffering. Electron microscopy and tomographic reconstruction revealed asymmetric mitochondria with blebs of herniated matrix, distended inner membrane and partial loss of cristae structure. Thus, apoptogenic redistribution of cytochrome c is responsible for a distinct program of mitochondrial respiratory dysfunction, in addition to the activation of downstream caspases.  相似文献   

15.
Calf thymus histones (individually isolated or mixtures) and high mobility group proteins were ADP-ribosylated in vitro using [32P]NAD+ and immobilized purified poly(ADP-ribose) polymerase. The modified histones were then subjected to V8 protease or alpha-chymotrypsin digestion and the resulting peptides were separated by electrophoresis on acetic acid-urea-Triton gels. It was found that in vitro ADP-ribosylated histones were much more resistant to proteases than unmodified histones. A similar approach was applied to histones modified by the endogenous poly(ADP-ribose) polymerase in permeabilized NS-1 mouse myeloma cells in culture. In this case, the proteases could not discriminate between modified and unmodified histones and putative mono(ADP-ribosyl)ated peptides appeared in a digestion frame corresponding to that of bulk peptides. These differences are most probably due to the specificity or number of ADP-ribose groups added to the histones by the endogenous or exogenous poly(ADP-ribose) polymerase. Thus, depending on the size of poly(ADP-ribose) attached to nuclear proteins, these modified proteins might display different degrees of resistance to proteolysis.  相似文献   

16.
In the intrinsic pathway of apoptosis, mitochondria play a crucial role by releasing cytochrome c from the intermembrane space into the cytoplasm. Cytochrome c release through Bax/Bak-dependent channels in mitochondria has been well documented. In contrast, cyclophilin D (CypD), an important component of permeability transition pore-dependent protein release, remains largely undefined, and no apoptogenic proteins that act specifically in a CypD-dependent manner have been reported to date. Here, we describe a novel and evolutionarily conserved protein, apoptogenic protein (Apop). Mouse Apop-1 expression induces apoptotic death by releasing cytochrome c from mitochondria into the cytosolic space followed by activation of caspase-9 and -3. Apop-1-induced apoptosis is not blocked by Bcl-2 or Bcl-xL, inhibitors of Bax/Bak-dependent channels, whereas it is completely blocked by cyclosporin A, an inhibitor of permeability transition pore. Cells lacking CypD were resistant to Apop-induced apoptosis. Moreover, inhibition of Apop expression prevented the cell death induced by apoptosis-inducing substances. Our findings, thus, indicate that the expression of Apop-1 induces apoptosis though CypD-dependent pathway and that Apop-1 plays roles in cell death under physiological conditions.  相似文献   

17.
Mitochondrial permeability transition (MPT) has been proposed to play a key role in cell death. Downstream MPT events include the release of apoptogenic factors that sets in motion the mitochondrial apoptosome leading to caspase activation. The current work examined the regulation of MPT by membrane fluidity modulated upon cholesterol enrichment. Mitochondria enriched in cholesterol displayed increased microviscosity resulting in impaired MPT induced by atractyloside, a c-conformation stabilizing ligand of the adenine nucleotide translocator (ANT). This effect was dependent on the dose of cholesterol loaded and reversed upon the fluidization of mitochondria by the fatty acid derivative A2C. Mitoplasts derived from cholesterol-enriched mitochondria responded to atractyloside in a similar fashion as intact mitochondria, indicating that a significant amount of cholesterol is still found in the inner membrane. The effects of cholesterol on MPT induced by atractyloside were mirrored by the release of intermembrane proteins, cytochrome c, Smac/Diablo, and apoptosis inducing factor. However, cholesterol loading did not affect the uptake rate of adenine nucleotide hence dissociating the function of ANT as a MPT-mediated protein from its adenine nucleotide exchange function. Thus, these findings indicate that the ability of atractyloside to induce MPT via ANT requires an appropriate membrane fluidity range.  相似文献   

18.
Caspases are not localized in mitochondria during life or death   总被引:5,自引:0,他引:5  
Caspases are crucial for the initiation, propagation and execution of apoptosis. They normally exist as proenzymes, which can be activated through recruitment into activating complexes and by proteolytic cleavage by other caspases or proteases. Perturbation of organelles such as nuclei, endoplasmatic reticulum and mitochondria results in the activation of caspases. A number of caspases (-2, -3, -8 and -9) were published as being localized in the intermembrane space of mitochondria. However, in three different models of apoptosis (anti-Fas-induced cell death in murine hepatocytes, Fas ligand-induced apoptosis in Jurkat cells and apoptosis induced by growth factor withdrawal in Ba/F3 cells) we could not identify a mitochondrial location of caspases, neither under control nor under apoptotic conditions. In all three apoptotic models caspases were found in the cytosolic (caspases-2, -3, -6, -7, -8, -9) and nuclear subcellular fractions (caspases-2, -3). In another approach we treated isolated liver mitochondria with truncated Bid. Although tBid-dependent release of Cytochrome c, AIF, adenylate kinase, Smac/DIABLO and Omi/HtrA2 could be demonstrated, none of the caspases were detectable both in the supernatant and the mitochondrial fraction after treatment. Our results demonstrate that, in contrast to previous studies, no caspases-2, -3, -8 and -9 are associated with the mitochondrial fraction. These findings support the concept of a separate compartmentalization between proapoptotic cofactors in the mitochondria and silent precursor caspases in the cytosol.  相似文献   

19.
Mitochondria harbor a conserved proteolytic system that mediates the complete degradation of organellar proteins. ATP-dependent proteases, like a Lon protease in the matrix space and m- and i-AAA proteases in the inner membrane, degrade malfolded proteins within mitochondria and thereby protect the cell against mitochondrial damage. Proteolytic breakdown products include peptides and free amino acids, which are constantly released from mitochondria. It remained unclear, however, whether the turnover of malfolded proteins involves only ATP-dependent proteases or also oligopeptidases within mitochondria. Here we describe the identification of Mop112, a novel metallopeptidase of the pitrilysin family M16 localized in the intermembrane space of yeast mitochondria. This peptidase exerts important functions for the maintenance of the respiratory competence of the cells that overlap with the i-AAA protease. Deletion of MOP112 did not affect the stability of misfolded proteins in mitochondria, but resulted in an increased release from the organelle of peptides, generated upon proteolysis of mitochondrial proteins. We find that the previously described metallopeptidase saccharolysin (or Prd1) exerts a similar function in the intermembrane space. The identification of peptides released from peptidase-deficient mitochondria by mass spectrometry indicates a dual function of Mop112 and saccharolysin: they degrade peptides generated upon proteolysis of proteins both in the intermembrane and matrix space and presequence peptides cleaved off by specific processing peptidases in both compartments. These results suggest that the turnover of mitochondrial proteins is mediated by the sequential action of ATP-dependent proteases and oligopeptidases, some of them localized in the intermembrane space.  相似文献   

20.
Regions of DNA protected by histones against the action of DNAse 1 in the chromatin were isolated. Such DNA fragments ("subhistones" DNA) have 80% double helix structure, their nucleotide composition is close to that of total DNA, and their sedimentation constant is within the range of 2-2.7S for completely denatured molecules. Kinetics of renaturation of "subhistone" DNA was studied: within a wide range of Cot values, renaturation curves of total and "subhistone" DNA are almost identical. According to the data on hybridization with nuclear d-RNA, "subhistone" DNA is transcribed in the cell. The data obtained witness for uniform character of distribution of histones along the DNA chain in the chromatin. DNA sites which are active in RNA synthesis seem to be bound to histones as well as the non-active ones. No significant difference was found in the hybridization of "subhistone" DNA from rat liver and thymus with ibver nuclear RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号