首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this study was to determine the role of inducible nitric oxide synthase (iNOS) in the arterial pressure, renal hemodynamic, renal excretory, and hormonal changes that occur in Dahl/Rapp salt-resistant (R) and salt-sensitive (S) rats during changes in Na intake. Thirty-two R and S rats, equipped with indwelling arterial and venous catheters, were subjected to low (0.87 mmol/day) or high (20.6 mmol/day) Na intake, and selective iNOS inhibition was achieved with intravenous aminoguanidine (AG, 12.3 mg. kg(-1). h(-1)). After 5 days of AG, mean arterial pressure increased to 121 +/- 3% control in the R-high Na AG rats compared with 98 +/- 1% control (P < 0.05) in the R-high Na alone rats, and S-high Na rats increased their arterial pressure to 123 +/- 3% control compared with 110 +/- 2% control (P < 0.05) in S-high Na alone rats. AG caused no significant changes in renal hemodynamics, urinary Na or H(2)O excretion, plasma renin activity, or cerebellar Ca-dependent NOS activity. The data suggest that nitric oxide produced by iNOS normally helps to prevent salt-sensitive hypertension in the Dahl R rat and decreases salt sensitivity in the Dahl S rat.  相似文献   

2.
肾髓质诱导型一氧化氮合酶在动脉血压调控中的作用   总被引:3,自引:0,他引:3  
Tan DY  Caramelo C 《生理学报》2000,52(2):103-108
本文通过慢性血液动力学实验,观察了肾髓质局部输入诱导型一氧化酶(iNOS)抑制剂AG(aminoguanidine)对Dahl盐敏感大鼠(DS)、Dahl盐抵抗大鼠(DR)及SD(Sprague Dawley)大鼠动脉血压的影响,并测定了一氧化氮(NO)代谢终产物NO2及NO3含量(UNOX)、iNOS活性、肾功能以及血浆肾素活性(PRA)。结果表明:AG能明显放大高盐(8%)引起的DS及SD大鼠  相似文献   

3.
Antifibrotic role of inducible nitric oxide synthase.   总被引:4,自引:0,他引:4  
Long-term treatment in rats with l-NAME, an isoform-non-specific inhibitor of nitric oxide synthase (NOS), leads to fibrosis of the heart and kidney, suggesting that nitric oxide (NO) may play a role in preventing tissue fibrosis. In this process, a likely target of NO is the quenching of reactive oxygen species (ROS) through peroxynitrite formation, and one possible source for this NO is inducible NOS (iNOS). Using Peyronie's disease (PD) tissue from both human specimens and from a rat model of PD as the source of fibrotic tissue, we investigated if NO derived from iNOS could act as such an antifibrogenic defense mechanism by determining whether: (a) tunical ROS and iNOS are increased in PD; and (b) the long-term inhibition of iNOS activity decreases the NO/ROS balance in the tunica albuginea thereby promoting collagen deposition. It was determined that in the human PD plaque, iNOS mRNA and protein, ROS, collagen, and the peroxynitrite marker, nitrotyrosine, were all increased in comparison to the normal tunica. In the rat model of PD, the fibrotic plaque also showed significant increases in iNOS mRNA and protein, nitrotyrosine, ROS as measured by heme oxygenase-1, and collagen when compared with the normal control tunica. When a selective inhibitor of iNOS, L-NIL, was given to rats with the PD-like plaque, this resulted in a decrease in nitrotyrosine levels but intensified ROS levels and collagen deposition. These data demonstrate that: (a) iNOS induction occurs in both the human and rat PD fibrotic plaque; and (b) that the NO derived from iNOS appears to counteract ROS formation and collagen deposition. Because the inhibition of iNOS activity leads to a decrease in the NO/ROS ratio, thereby favoring the development of fibrosis, it is proposed that iNOS induction in this tissue may be a protective mechanism against fibrosis and abnormal wound healing.  相似文献   

4.
Adrenomedullin reduces systemic blood pressure and increases urinary sodium excretion partly through the release of nitric oxide. We hypothesized that chronic adrenomedullin infusion ameliorates salt-sensitive hypertension and increases the expression of renal nitric oxide synthase (NOS) in Dahl salt-sensitive (DS) rats, because the reduced renal NOS expression promotes salt sensitivity. DS rats and Dahl salt-resistant (DR) rats were fed a high sodium diet (8.0% NaCl) for 3 weeks. The high sodium diet resulted in an increase in blood pressure and a reduction of urinary sodium excretion in association with increased renal adrenomedullin concentrations and decreased expression of renal neuronal NOS (nNOS) and renal medullary endothelial NOS (eNOS) in DS rats compared with DR rats. Chronic adrenomedullin infusion partly inhibited the increase of blood pressure and proteinuria in association with a restoration of renal nNOS and medullary eNOS expression in DS rats under the high sodium diet. The immunohistochemical analysis revealed that the restored renal nNOS expression induced by chronic adrenomedullin infusion may reflect the restoration of nNOS expression in the macula densa and inner medullary collecting duct. These results suggest that adrenomedullin infusion has beneficial effects on this hypertension probably in part through restored renal NOS expression in DS rats.  相似文献   

5.
Saia RS  Carnio EC 《Life sciences》2006,79(15):1473-1478
We have tested the hypothesis that nitric oxide (NO) arising from inducible nitric oxide synthase (iNOS) plays a role in hypothermia during endotoxemia by regulating vasopressin (AVP) release. Wild-type (WT) and iNOS knockout mice (KO) were intraperitoneally injected with either saline or Escherichia coli lipopolysaccharide (LPS) 10.0 mg/kg in a final volume of 0.02 mL. Body temperature was measured continuously by biotelemetry during 24 h after injection. Three hours after LPS administration, we observed a significant drop in body temperature (hypothermic response) in WT mice, which remained until the seventh hour, returning then close to the basal level. In iNOS KO mice, we found a significant fall in body temperature after the fourth hour of LPS administration; however, the hypothermic response persisted until the end of the 24 h of the experiment. The pre-treatment with beta-mercapto-beta,beta-cyclopentamethylenepropionyl(1), O-Et-Tyr2, Val4, Arg8-Vasopressin, an AVP V1 receptor antagonist (10 microg/kg) administered intraperitoneally, abolished the persistent hypothermia induced by LPS in iNOS KO mice, suggesting the regulation of iNOS under the vasopressin release in this experimental model. In conclusion, our data suggest that the iNOS isoform plays a role in LPS-induced hypothermia, apparently through the regulation of AVP release.  相似文献   

6.
All nitric oxide synthase (NOS) isotypes bear a conserved tryptophan that stacks against the proximal face of the heme cofactor. Recently two hyperactive variants of neuronal NOS were reported in which this residue (W409) was replaced by phenylalanine or tyrosine. We find that mutation of the same residue in the oxygenase domain of inducible NOS (W188) to phenylalanine causes severe destabilization of heme binding. W188F is isolated in a predominantly heme-free state, and axial thiolate ligation to the residual bound heme is unstable. However, W188F is soluble and is expressed at levels comparable to wild type. While circular dichroism spectroscopy demonstrates the loss of some secondary structure, the protein chain is not completely denatured and it retains much of its fold between pH 7.5 and 4. This proximal tryptophan of NOS represents a case where a residue is conserved within an enzyme family but for distinct purposes that are isotype-dependent.  相似文献   

7.
8.
BackgroundHyperoxic exposures are often found in clinical settings of respiratory insufficient patients, although oxygen therapy (>50% O2) can result in the development of acute hyperoxic lung injury within a few days. Upon hyperoxic exposure, the inducible nitric oxide synthase (iNOS) is activated by a variety of proinflammatory cytokines both in vitro and in vivo. In the present study, we used a murine hyperoxic model to evaluate the effects of iNOS deficiency on the inflammatory response.MethodsWild-type and iNOS-deficient mice were exposed to normoxia, 60% O2 or >95% O2 for 72 h.ResultsExposure to >95% O2 resulted in an increased iNOS mRNA and protein expression in the lungs from wild-type mice. No significant effects of iNOS deficiency on cell differential in bronchoalveolar lavage fluid were observed. However, hyperoxia induced a significant increase in total cell count, protein concentration, LDH activity, lipid peroxidation, and TNF-α concentration in the bronchoalveolar lavage fluid compared to iNOS knockout mice. Moreover, binding activity of NF-κB and AP-1 appeared to be higher in wild-type than in iNOS-deficient mice.ConclusionTaken together, our results provide evidence to suggest that iNOS plays a proinflammatory role in acute hyperoxic lung injury.  相似文献   

9.
Reactive oxygen and nitrogen species have been implicated in the pathogenesis of asbestos fibers-associated pulmonary diseases. By comparing the responses of inducible nitric oxide synthase (iNOS) knockout and wild-type mice we investigated the consequences of iNOS expression for the development of the inflammatory response and tissue injury upon intratracheal instillation of asbestos fibers. Exposure to asbestos fibers resulted in an increased iNOS mRNA and protein expression in the lungs from wild-type mice. Moreover, iNOS knockout mice exhibited an exceeded pulmonary expression and production of TNF-alpha as well as a higher influx of neutrophils into the alveolar space than wild-type mice. In contrast, iNOS knockout animals displayed an attenuated oxidant-related tissue injury reflected in a decrease in protein leakage and LDH release into the alveolar space as well as weaker nitrotyrosine staining of lung tissue compared to wild-type mice. Data presented here indicate that iNOS-derived NO exerts a dichotomous role in acute asbestos-induced lung injury in that iNOS deficiency resulted in an exacerbated inflammatory response but improved oxidant-promoted lung tissue damage.  相似文献   

10.
Essential hypertension is a common multifactorial trait that results in a significantly increased risk for heart attack and stroke. The condition has a genetic basis, although at present the number of genes is unknown. In order to identify such genes, we are utilising a linkage scanning approach using microsatellite markers and affected sibships. Here we provide evidence for the location of at least one hypertension susceptibility locus on chromosome 17. Analysis of 177 affected sibpairs gave evidence for significant excess allele sharing to D17S949 (SPLINK: P=0.0029; MAPMAKER SIBS: P=0.0033; ASPEX: P=0.0061; GENEHUNTER: P=0.0096; ANALYZE (SIBPAIR): P=0.0025) on 17q22-24, with significant allele sharing also indicated for an additional marker, D17S799 (SPLINK: P=0.025; MAPMAKER SIBS: P=0.025) located close to the centromere. Since these two genomic regions are well separated, our results indicate that there may be more than one chromosome 17 locus affecting human blood pressure. Moreover, further investigation of this chromosome, utilizing a polymorphism within the promoter of the iNOS candidate gene, NOS2A, revealed both increased allele sharing among sibpairs (SPLINK: P=0.02; ASPEX: P=0.00004) and positive association (P=0.034) of NOS2A to essential hypertension. Hence these results indicate that chromosome 17 and, more specifically, the NOS2A gene may play a role in human essential hypertension.  相似文献   

11.
The inducible isoform of nitric oxide synthase (iNOS) and three zinc tetrathiolate mutants (C104A, C109A, and C104A/C109A) were expressed in Escherichia coli and purified. The mutants were found by ICP-AES and the zinc-specific PAR colorimetric assay to be zinc free, whereas the wild-type iNOS zinc content was 0.38 +/- 0.01 mol of Zn/mol of iNOS dimer. The cysteine mutants (C104A and C109A) had an activity within error of wild-type iNOS (2.24 +/- 0.12 micromol of NO min(-1) mg(-1)), but the double cysteine mutant had a modestly decreased activity (1.75 +/- 0.14 micromol of NO min(-1) mg(-1)). To determine if NO could stimulate release of zinc and dimer dissociation, wild-type protein was allowed to react with an NO donor, DEA/NO, followed by buffer exchange. ICP-AES of samples treated with 10 microM DEA/NO showed a decrease in zinc content (0.23 +/- 0.01 to 0.09 +/- 0.01 mol of Zn/mol of iNOS dimer) with no loss of heme iron. Gel filtration of wild-type iNOS treated similarly resulted in approximately 20% more monomeric iNOS compared to a DEA-treated sample. Only wild-type iNOS had decreased activity (42 +/- 2%) after reaction with 50 microM DEA/NO compared to a control sample. Using the biotin switch method under the same conditions, only wild-type iNOS had increased levels of S-biotinylation. S-Biotinylation was mapped to C104 and C109 on wild-type iNOS using LysC digestion and MALDI-TOF/TOF MS. Immunoprecipitation of iNOS from the mouse macrophage cell line, RAW-264.7, and the biotin switch method were used to confirm endogenous S-nitrosation of iNOS. The data show that S-nitrosation of the zinc tetrathiolate cysteine results in zinc release from the dimer interface and formation of inactive monomers, suggesting that this mode of inhibition might occur in vivo.  相似文献   

12.
We have previously shown in rats that lipopolysaccharide (LPS) causes both decreased renal perfusion and kidney arginine production before nitric oxide (NO) synthesis, resulting in a >30% reduction in plasma arginine. To clarify the early phase effects of LPS, we asked the following two questions: 1) is the rapid change in renal arginine production after LPS simply the result of decreased substrate (i.e., citrulline) delivery to the kidney or due to impaired uptake and conversion and 2) is the systemic production of NO limited by plasma arginine availability after LPS? Arterial and renal vein plasma was sampled at 30-min intervals from anesthetized rats with or without citrulline or arginine (2 micromol.min(-1).kg(-1) iv) a dose with no effect on MAP, renal function, or NO production. Exogenous citrulline was quickly converted to arginine by the kidney, resulting in plasma levels similar to equimolar arginine infusion. Also, the increase in citrulline uptake resulted primarily from increased filtered load and reabsorption. In a separate series, citrulline was infused after LPS administration, verifying that citrulline uptake and conversion persists during impaired kidney function. Last, in rats given LPS, the elevation of plasma arginine had no discernable impact on mean arterial pressure, kidney function, or systemic NO production. This work demonstrates how arginine synthesis is normally "substrate limited" and explains how impaired kidney perfusion quickly results in decreased plasma arginine. However, contrary to in vitro studies, the significant reduction in extracellular arginine during the early phase response to LPS in vivo is not functionally rate limiting for NO production.  相似文献   

13.
Hypoxia-inducible factor-1 (HIF-1) could ameliorate renal ischemia reperfusion injury (IRI), but the underlying mechanism remains elusive. In the current study, we aim to investigate the possible role of prolyl hydroxylases inhibitor dimethyloxalylglycine (DMOG) in inducing delayed preconditioning-like effects against IRI. Mice were divided into four groups (n = 6): sham group; IRI group; DMOG group: pretreated with DMOG 24 h before IRI; and GW274150 + DMOG group: pretreated with DMOG followed by iNOS inhibitor GW274150 treatment 24 h before IRI. The results showed that the protein level of HIF-1a and the expression of its targets inducible nitric oxide synthase (iNOS), erythropoietin, and heme oxygenase-1 were obviously increased after administration of DMOG. Histological analysis of renal function showed improvement in tubulointerstitial injury due to ischemia by delayed preconditioning with DMOG. GW274150 antagonized the delayed renal protection afforded by DMOG as reflected by deteriorated renal dysfunction, aggravated histological injury, increased renal cell apoptosis, and increased vimentin expression in the kidney. In conclusion, our data demonstrate that DMOG pretreatment induces delayed renal protection against IRI in mice and the beneficial effects are mitigated by pharmacological inhibition of iNOS, suggesting that the protective effects derived from HIF-1 activation via DMOG in the kidney are partially mediated by iNOS.  相似文献   

14.
15.
This in vivo study evaluates the effect of N-acetylcysteine (NAC) administration on nitric oxide (NO) production by the inducible form of nitric oxide synthase (iNOS). NO production was induced in the rat by the ip administration of 2 mg/100 g lipopolysaccharide (LPS). This treatment caused: (1) a decrease in body temperature within 90 min, followed by a slow return to normal levels; (2) an increase in plasma levels of urea, nitrite/nitrate, and citrulline; (3) the appearance in blood of nitrosyl-hemoglobin (NO-Hb) and in liver of dinitrosyl-iron-dithiolate complexes (DNIC); and (4) increased expression of iNOS mRNA in peripheral blood mononuclear cells (PBMC). Rat treatment with 15 mg/100 g NAC ip, 30 min before LPS, resulted in a significant decrease in blood NO-Hb levels, plasma nitrite/nitrate and citrulline concentrations, and liver DNIC complexes. PBMC also showed a decreased expression of iNOS mRNA. NAC pretreatment did not modify the increased levels of plasma urea or the hypothermic effect induced by the endotoxin. The administration of NAC following LPS intoxication (15 min prior to sacrifice) did not affect NO-Hb levels. These results demonstrate that NAC administration can modulate the massive NO production induced by LPS. This can be attributed mostly to the inhibitory effect of NAC on one of the events leading to iNOS protein expression. This hypothesis is also supported by the lack of effect of late NAC administration.  相似文献   

16.
17.
A series of compounds was rationally designed as inhibitors of dimer formation of the inducible isoform of nitric oxide synthase, and subsequent nitric oxide production. The conformation of two fragments obtained from a crystal structure was utilized to design a tether connecting those same two fragments. The resulting compounds were potent dimerization inhibitors that bound to the enzyme in a similar conformation as the fragments.  相似文献   

18.
Kim JM  Kim JS  Jung HC  Song IS  Kim CY 《Helicobacter》2002,7(2):116-128
Background. Nitric oxide (NO) generated by nitric oxide synthase (NOS) is known to be an important modulator of the mucosal inflammatory response. In this study, we questioned whether Helicobacter pylori infection could up‐regulate the epithelial cell inducible NOS (iNOS) gene expression and whether NO production could show polarity that can be regulated by immune mediators. Materials and Methods. Human gastric epithelial cell lines were infected with H. pylori, and the iNOS mRNA expression was assessed by quantitative RT‐PCR. NO production was assayed by determining nitrite/nitrate levels in culture supernatants. To determine the polarity of NO secretion by the H. pylori‐infected epithelial cells, Caco‐2 cells were cultured as polarized monolayers in transwell chambers, and NO production was measured. Results. iNOS mRNA levels were significantly up‐regulated in the cells infected with H. pylori, and expression of iNOS protein was confirmed by Western blot analysis. Increased NO production in the gastric epithelial cells was seen as early as 18 hours postinfection, and reached maximal levels by 24 hours postinfection. The specific MAP kinase inhibitors decreased H. pylori‐induced iNOS and NO up‐regulation. After H. pylori infection of polarized epithelial cells, NO was released predominantly into the apical compartment, and IL‐8 was released predominantly into basolateral compartment. The addition of IFN‐γ to H. pylori‐infected polarized epithelial cells showed a synergistically higher apical and basolateral NO release. Conclusion. These results suggest that apical NO production mediated by MAP kinase in H. pylori‐infected gastric epithelial cells may influence the bacteria and basolateral production of NO and IL‐8 may play a role in the tissue inflammation.  相似文献   

19.
The present study was undertaken to investigate the role of inducible nitric oxide synthase in a rat model of persistent pain. The effects of L-N6 (1-iminoethyl) lysine (L-NIL), a relatively potent and relatively selective inhibitor of inducible nitric oxide synthase, were investigated in carrageenan induced hyperalgesia L-NIL (0.1 microMole) injected intraplantar or intrathecal markedly enhanced carrageenan induced hyperalgesia. These effects were reversed during the third hour by co-administration of L-arginine (900 mg/kg i.p.) but not D-arginine. Methylene blue (MB), a soluble guanylate cyclase inhibitor, administered intrathecally (0.1 microg) had no effect on L-NIL potentiation of carrageenan hyperalgesia but abolished antinociception induced by L-arginine. Obtained results suggest that nitric oxide derived from inducible nitric oxide synthase play an inhibitory role in carrageenan produced hyperalgesia in rat.  相似文献   

20.
Feng C  Cao L  Zuo Z 《FEBS letters》2011,585(15):2488-2492
Vector-mediated delivery of short-hairpin RNA (shRNA) to regulate gene expression holds a great therapeutic promise. We hypothesize that gene expression can be autoregulated with RNA interference. We used inducible nitric oxide synthase (iNOS) as a gene model to test this hypothesis. Lipopolysaccharide dose-dependently increased iNOS in rat aortic smooth muscle cells and the nitrite production from these cells. These increases were attenuated in cells transfected with plasmids containing code for iNOS shRNA whose expression was controlled by an iNOS promoter. The production of shRNA was lipopolysaccharide dose-dependent. The lipopolysaccharide-induced iNOS expression in rat C6 glioma cells also was attenuated by transfection with plasmids containing the iNOS shRNA code. These results provide proof-of-concept evidence for using RNA interference technique to achieve autoregulation of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号