首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acid metabolism is enhanced in type 2 diabetic hearts   总被引:10,自引:0,他引:10  
The metabolic phenotype of hearts has been investigated using rodent models of type 2 diabetes which exhibit obesity and insulin resistance: db/db and ob/ob mice, and Zucker fatty and ZDF rats. In general, cardiac fatty acid (FA) utilization is enhanced in type 2 diabetic hearts, with increased rates of FA oxidation (db/db, ob/ob and ZDF models) and increased FA esterification into cellular triacylglycerols (db/db hearts). Hearts from db/db and ob/ob mice and ZDF rat hearts all have elevated levels of myocardial triacylglycerols, consistent with enhanced FA utilization. A number of mechanisms may be responsible for enhanced FA utilization in type 2 diabetic hearts: (i) increased FA uptake into cardiac myocytes and into mitochondria; (ii) altered mitochondrial function, with up-regulation of uncoupling proteins; and (iii) stimulation of peroxisome proliferator-activated receptor-alpha. Enhanced cardiac FA utilization in rodent type 2 diabetic models is associated with reduced cardiac contractile function, perhaps as a consequence of lipotoxicity and/or reduced cardiac efficiency. Similar results have been obtained with human type 2 diabetic hearts, suggesting that pharmacological interventions that can reduce cardiac FA utilization may have beneficial effects on contractile function.  相似文献   

2.
The aim of this study was to determine the biochemical mechanism(s) responsible for enhanced FA utilization (oxidation and esterification) by perfused hearts from type 2 diabetic db/db mice. The plasma membrane content of fatty acid transporters FAT/CD36 and FABPpm was elevated in db/db hearts. Mitochondrial mechanisms that could contribute to elevated rates of FA oxidation were also examined. Carnitine palmitoyl transferase-1 activity was unchanged in mitochondria from db/db hearts, and sensitivity to inhibition by malonyl-CoA was unchanged. Malonyl-CoA content was elevated and AMP kinase activity was decreased in db/db hearts, opposite to what would be expected in hearts exhibiting elevated rates of FA oxidation. Uncoupling protein-3 expression was unchanged in mitochondria from db/db hearts. Therefore, enhanced FA utilization in db/db hearts is most likely due to increased FA uptake caused by increased plasma membrane content of FA transporters; the mitochondrial mechanisms examined do not contribute to elevated FA oxidation observed in db/db hearts.  相似文献   

3.
Diabetic (db/db) mice provide an animal model of Type 2 diabetes characterized by marked in vivo insulin resistance. The effect of insulin on myocardial metabolism has not been fully elucidated in this diabetic model. In the present study we tested the hypothesis that the metabolic response to insulin in db/db hearts will be diminished due to cardiac insulin resistance. Insulin-induced changes in glucose oxidation (GLUox) and fatty acid (FA) oxidation (FAox) were measured in isolated hearts from control and diabetic mice, perfused with both low as well as high concentration of glucose and FA: 10 mM glucose/0.5 mM palmitate and 28 mM glucose/1.1 mM palmitate. Both in the absence and presence of insulin, diabetic hearts showed decreased rates of GLUox and elevated rates of FAox. However, the insulin-induced increment in GLUox, as well as the insulin-induced decrement in FAox, was similar or even more pronounced in diabetic that in control hearts. During elevated FA and glucose supply, however, the effect of insulin was blunted in db/db hearts with respect to both FAox and GLUox. Finally, insulin-stimulated deoxyglucose uptake was markedly reduced in isolated cardiomyocytes from db/db mice, whereas glucose uptake in isolated perfused db/db hearts was clearly responsive to insulin. These results show that, despite reduced insulin-stimulated glucose uptake in isolated cardiomyocytes, isolated perfused db/db hearts are responsive to metabolic actions of insulin. These results should advocate the use of insulin therapy (glucose-insulin-potassium) in diabetic patients undergoing cardiac surgery or during reperfusion after an ischemic insult.  相似文献   

4.
Peroxisome proliferator-activated receptor-alpha (PPARalpha) regulates the expression of fatty acid (FA) oxidation genes in liver and heart. Although PPARalpha ligands increased FA oxidation in cultured cardiomyocytes, the cardiac effects of chronic PPARalpha ligand administration in vivo have not been studied. Diabetic db/db mouse hearts exhibit characteristics of a diabetic cardiomyopathy, with altered metabolism and reduced contractile function. A testable hypothesis is that chronic administration of a PPARalpha agonist to db/db mice will normalize cardiac metabolism and improve contractile function. Therefore, a PPARalpha ligand (BM 17.0744) was administered orally to control and type 2 diabetic (db/db) mice (37.9 +/- 2.5 mg/(kg.d) for 8 weeks), and effects on cardiac metabolism and contractile function were assessed. BM 17.0744 reduced plasma glucose in db/db mice, but no change was observed in control mice. FA oxidation was significantly reduced in BM 17.0744 treated db/db hearts with a corresponding increase in glycolysis and glucose oxidation; glucose and FA oxidation in control hearts was unchanged by BM 17.0744. PPARalpha treatment did not alter expression of PPARalpha target genes in either control or diabetic hearts. Therefore, metabolic alterations in hearts from PPARalpha-treated diabetic mice most likely reflect indirect mechanisms related to improvement in diabetic status in vivo. Despite normalization of cardiac metabolism, PPARalpha treatment did not improve cardiac function in diabetic hearts.  相似文献   

5.
The aim of the present study was to evaluate the underlying processes involved in the oxygen wasting induced by inotropic drugs and acute and chronic elevation of fatty acid (FA) supply, using unloaded perfused mouse hearts from normal and type 2 diabetic (db/db) mice. We found that an acute elevation of the FA supply in normal hearts, as well as a chronic (in vivo) exposure to elevated FA as in db/db hearts, increased myocardial oxygen consumption (MVo?(unloaded)) due to increased oxygen cost for basal metabolism and for excitation-contraction (EC) coupling. Isoproterenol stimulation, on top of a high FA supply, led to an additive increase in MVo?(unloaded), because of a further increase in oxygen cost for EC coupling. In db/db hearts, the acute elevation of FA did not further increase MVo?. Since the elevation in the FA supply is accompanied by increased rates of myocardial FA oxidation, the present study compared MVo? following increased FA load versus FA oxidation rate by exposing normal hearts to normal and high FA concentration (NF and HF, respectively) and to compounds that either stimulate (GW-610742) or inhibit [dichloroacetate (DCA)] FA oxidation. While HF and NF + GW-610742 increased FA oxidation to the same extent, only HF increased MVo?(unloaded). Although DCA counteracted the HF-induced increase in FA oxidation, DCA did not reduce MVo?(unloaded). Thus, in normal hearts, acute FA-induced oxygen waste is 1) due to an increase in the oxygen cost for both basal metabolism and EC coupling and 2) not dependent on the myocardial FA oxidation rate per se, but on processes initiated by the presence of FAs. In diabetic hearts, chronic exposure to elevated circulating FAs leads to adaptations that afford protection against the detrimental effect of an acute FA load, suggesting different underlying mechanisms behind the increased MVo? following acute and chronic FA load.  相似文献   

6.
Very-low-density lipoprotein (VLDL) and chylomicrons (CM) are major sources of fatty acid supply to the heart, but little is known about their metabolism in diabetic myocardium. To investigate this, working hearts isolated from control rats and diabetic rats 2 wk following streptozotocin (STZ) injection were perfused with control and diabetic lipoproteins. Analysis of the diabetic lipoproteins showed that both VLDL and CM were altered compared with control lipoproteins; both were smaller and had different apolipoprotein composition. Heparin-releasable lipoprotein lipase (HR-LPL) activity was increased in STZ-induced diabetic hearts, but tissue residual LPL activity was decreased; moreover, diabetic lipoproteins stimulated HR-LPL activity in both diabetic and control hearts. Diabetic hearts oxidized lipoprotein-triacylglycerol (TAG) to a significantly greater extent than controls (>80% compared with deposition as tissue lipid), and the oxidation rate of exogenous lipoprotein-TAG was increased significantly in diabetic hearts regardless of TAG source. Significantly increased intracardiomyocyte TAG accumulation was found in diabetic hearts, although cardiac mechanical function was not inhibited, suggesting that lipotoxicity precedes impaired cardiac performance. Glucose oxidation was significantly decreased in diabetic hearts; additionally, however, diabetic lipoproteins decreased glucose oxidation in diabetic and control hearts. These results demonstrate increased TAG-rich lipoprotein metabolism concomitant with decreased glucose oxidation in type 1 diabetic hearts, and the alterations in cardiac lipoprotein metabolism may be due to the properties of diabetic TAG-rich lipoproteins as well as the diabetic state of the myocardium. These changes were not related to cardiomyopathy at this early stage of diabetes.  相似文献   

7.
Hearts from type 2 diabetic (db/db) mice demonstrate altered substrate utilization with high rates of fatty acid oxidation, decreased functional recovery following ischemia, and reduced cardiac efficiency. Although db/db mice show overall insulin resistance in vivo, we recently reported that insulin induces a marked shift toward glucose oxidation in isolated perfused db/db hearts. We hypothesize that such a shift in metabolism should improve cardiac efficiency and consequently increase functional recovery following low-flow ischemia. Hearts from db/db and nondiabetic (db/+) mice were perfused with 0.7 mM palmitate plus either 5 mM glucose (G), 5 mM glucose and 300 microU/ml insulin (GI), or 33 mM glucose and 900 microU/ml insulin (HGHI). Substrate oxidation and postischemic recovery were only moderately affected by GI and HGHI in db/+ hearts. In contrast, GI and particularly HGHI markedly increased glucose oxidation and improved postischemic functional recovery in db/db hearts. Cardiac efficiency was significantly improved in db/db, but not in db/+ hearts, in the presence of HGHI. In conclusion, insulin and glucose normalize cardiac metabolism, restore efficiency, and improve postischemic recovery in type 2 diabetic mouse hearts. These findings may in part explain the beneficial effect of glucose-insulin-potassium therapy in diabetic patients with cardiac complications.  相似文献   

8.
Tetradecylthioacetic acid (TTA) is a novel peroxisome proliferator-activated receptor (PPAR) ligand with marked hypolipidemic and insulin-sensitizing effects in obese models. TTA has recently been shown to attenuate dyslipidemia in patients with type 2 diabetes, corroborating the potential for TTA in antidiabetic therapy. In a recent study on normal mice, we showed that TTA increased myocardial fatty acid (FA) oxidation, which was associated with decreased cardiac efficiency and impaired postischemic functional recovery. The aim of the present study was, therefore, to elucidate the effects of TTA treatment (0.5%, 8 days) on cardiac metabolism and function in a hyperlipidemic type 2 diabetic model. We found that TTA treatment increased myocardial FA oxidation, not only in nondiabetic (db/+) mice but also in diabetic (db/db) mice, despite a clear lipid-lowering effect. Although TTA had deleterious effects in hearts from nondiabetic mice (decreased efficiency and impaired mitochondrial respiratory capacity), these effects were not observed in db/db hearts. In db/db hearts, TTA improved ischemic tolerance, an effect that is most likely related to the antioxidant property of TTA. The present study strongly advocates the need for investigation of the cardiac effects of PPAR ligands used in antidiabetic/hypolipidemic therapy, because of their pleiotropic properties.  相似文献   

9.
Contractile function and substrate metabolism were characterized in perfused hearts from genetically diabetic C57BL/KsJ-lepr(db)/lepr(db) (db/db) mice and their non-diabetic lean littermates. Contractility was assessed in working hearts by measuring left ventricular pressures and cardiac power. Rates of glycolysis, glucose oxidation, and fatty acid oxidation were measured using radiolabeled substrates ([5-(3)H]glucose, [U-(14)C]glucose, and [9,10-(3)H]palmitate) in the perfusate. Contractile dysfunction in db/db hearts was evident, with increased left ventricular end diastolic pressure and decreased left ventricular developed pressure, cardiac output, and cardiac power. The rate of glycolysis from exogenous glucose in diabetic hearts was 48% of control, whereas glucose oxidation was depressed to only 16% of control. In contrast, palmitate oxidation was increased twofold in db/db hearts. The hypothesis that altered metabolism plays a causative role in diabetes-induced contractile dysfunction was tested using perfused hearts from transgenic db/db mice that overexpress GLUT-4 glucose transporters. Both glucose metabolism and palmitate metabolism were normalized in hearts from db/db-human insulin-regulatable glucose transporter (hGLUT-4) hearts, as was contractile function. These findings strongly support a causative role of impaired metabolism in the cardiomyopathy observed in db/db diabetic hearts.  相似文献   

10.
Hearts from insulin-resistant type 2 diabetic db/db mice exhibit features of a diabetic cardiomyopathy with altered metabolism of exogenous substrates and reduced contractile performance. Therefore, the effect of chronic oral administration of 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (COOH), a novel ligand for peroxisome proliferator-activated receptor-gamma that produces insulin sensitization, to db/db mice (30 mg/kg for 6 wk) on cardiac function was assessed. COOH treatment reduced blood glucose from 27 mM in untreated db/db mice to a normal level of 10 mM. Insulin-stimulated glucose uptake was enhanced in cardiomyocytes from COOH-treated db/db hearts. Working perfused hearts from COOH-treated db/db mice demonstrated metabolic changes with enhanced glucose oxidation and decreased palmitate oxidation. However, COOH treatment did not improve contractile performance assessed with ex vivo perfused hearts and in vivo by echocardiography. The reduced outward K+ currents in diabetic cardiomyocytes were still attenuated after COOH. Metabolic changes in COOH-treated db/db hearts are most likely indirect, secondary to changes in supply of exogenous substrates in vivo and insulin sensitization.  相似文献   

11.
The obesity epidemic is associated with an increased incidence of type 2 diabetes, cardiovascular morbidity and various types of cancer. A better insight into the molecular mechanisms that underlie adipogenesis and obesity may result in novel therapeutic handles to fight obesity and these associated diseases. Adipogenesis is determined by the balance between uptake of fatty acids (FA) from plasma into adipocytes, intracellular FA oxidation versus esterification of FA into triglycerides (TG), lipolysis of TG by intracellular lipases, and secretion of FA from adipocytes. Here, we review the mechanisms that are specifically involved in the entry of FA into adipose tissue. In plasma, these originating FA are either present as TG within apoB-containing lipoproteins (i.e. chylomicrons and VLDL) or as free FA bound to albumin. Kinetic studies, however, have revealed that TG are the major source of FA entering adipose tissue, both in the fed and fasted condition. In fact, studies with genetically engineered mice have revealed that the activity of lipoprotein lipase (LPL) is a major determinant for the development of obesity. As a general rule, high fat diet-induced adipogenesis is aggravated by stimulated LPL activity (e.g. by adipose tissue-specific overexpression of LPL or deficiency for apoCIII), and attenuated by inhibited LPL activity (e.g. by adipose-specific deficiency for LPL, overexpression of apoCI or angptl4, or by deficiency for apoE or the VLDL receptor). In addition, we describe that the trans-membrane transport of FA and cytoplasmic binding of FA in adipocytes can also dramatically affect adipogenesis. The relevance of these findings for human pathophysiology is discussed.  相似文献   

12.
13.
Isolated perfused hearts from type 2 diabetic (db/db) mice show impaired ventricular function, as well as altered cardiac metabolism. Assessment of the relationship between myocardial oxygen consumption (MVO(2)) and ventricular pressure-volume area (PVA) has also demonstrated reduced cardiac efficiency in db/db hearts. We hypothesized that lowering the plasma fatty acid supply and subsequent normalization of altered cardiac metabolism by chronic treatment with a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist will improve cardiac efficiency in db/db hearts. Rosiglitazone (23 mg/kg body weight/day) was administered as a food admixture to db/db mice for five weeks. Ventricular function and PVA were assessed using a miniaturized (1.4 Fr) pressure-volume catheter; MVO(2) was measured using a fibre-optic oxygen sensor. Chronic rosiglitazone treatment of db/db mice normalized plasma glucose and lipid concentrations, restored rates of cardiac glucose and fatty acid oxidation, and improved cardiac efficiency. The improved cardiac efficiency was due to a significant decrease in unloaded MVO(2), while contractile efficiency was unchanged. Rosiglitazone treatment also improved functional recovery after low-flow ischemia. In conclusion, the present study demonstrates that in vivo PPARgamma-treatment restores cardiac efficiency and improves ventricular function in perfused hearts from type 2 diabetic mice.  相似文献   

14.
In streptozotocin (STZ)-induced diabetic rats, we previously showed an increased heparin-releasable (luminal) lipoprotein lipase (LPL) activity from perfused hearts. To study the effect of this enlarged LPL pool on triglyceride (TG)-rich lipoproteins, we examined the metabolism of very-low-density lipoprotein (VLDL) perfused through control and diabetic hearts. Diabetic rats had elevated TG levels compared with control. However, fasting for 16 h abolished this difference. When the plasma lipoprotein fraction of density <1.006 g/ml from fasted control and diabetic rats was incubated in vitro with purified bovine or rat LPL, VLDL from diabetic animals was hydrolyzed as proficiently as VLDL from control animals. Post-heparin plasma lipolytic activity was comparable in control and diabetic animals. However, perfusion of control and diabetic rats with heparinase indicated that diabetic hearts had larger amounts of LPL bound to heparan sulfate proteoglycan-binding sites. [(3)H]VLDL obtained from control rats, when recirculated through the isolated heart, disappeared at a significantly faster rate from diabetic than from control rat hearts. This increased VLDL-TG hydrolysis was essentially abolished by prior perfusion of the diabetic heart with heparin, implicating LPL in this process. These findings suggest that the enlarged LPL pool in the diabetic heart is present at a functionally relevant location (at the capillary lumen) and is capable of hydrolyzing VLDL. This could increase the delivery of free fatty acid to the heart, and the resultant metabolic changes could induce the subsequent cardiomyopathy that is observed in the chronic diabetic rat.  相似文献   

15.
Hearts with overexpression of anchored lipoprotein lipase (LpL) by cardiomyocytes (hLpL(GPI) mice) develop a lipotoxic cardiomyopathy. To characterize cardiac fatty acid (FA) and triglyceride (TG) metabolism in these mice and to determine whether changes in lipid metabolism precede cardiac dysfunction, hearts from young mice were perfused in Langendorff mode with [14C]palmitate. In hLpL(GPI) hearts, FA uptake and oxidation were decreased by 59 and 82%, respectively. This suggests reliance on an alternative energy source, such as TG. Indeed, these hearts oxidized 88% more TG. Hearts from young hLpL(GPI) mice also had greater uptake of intravenously injected cholesteryl ester-labeled Intralipid and VLDL. To determine whether perfusion of normal hearts would mimic the metabolic alterations found in hLpL(GPI) mouse hearts, wild-type hearts were perfused with [14C]palmitate and either human VLDL or Intralipid (0.4 mM TG). Both sources of TG reduced [14C]palmitate uptake (48% with VLDL and 45% with Intralipid) and FA oxidation (71% with VLDL and 65% with Intralipid). Addition of either heparin or LpL inhibitor P407 to Intralipid-containing perfusate restored [14C]palmitate uptake and confirmed that Intralipid inhibition requires local LpL. Our data demonstrate that reduced FA uptake and oxidation occur before mechanical dysfunction in hLpL(GPI) lipotoxicity. This physiology is reproduced with perfusion of hearts with TG-containing particles. Together, the results demonstrate that cardiac uptake of TG-derived FA reduces utilization of albumin-FA.  相似文献   

16.
Toll-like receptor (TLR)4 regulates inflammation and metabolism and has been linked to the pathogenesis of heart disease. TLR4 is upregulated in diabetic cardiomyocytes, and we examined the role of TLR4 in modulating cardiac fatty acid (FA) metabolism and the pathogenesis of diabetic heart disease in nonobese diabetic (NOD) mice. Both wild-type (WT) NOD and TLR4-deficient NOD animals had increased plasma triglyceride levels after the onset of diabetes. However, by comparison, TLR4-deficient NOD mouse hearts had lower triglyceride accumulation in the early stages of diabetes, which was associated with a reduction in myeloid differentiation primary response gene (88) (MyD88), phosphorylation of p38 MAPK (phospho-p38), lipoprotein lipase (LPL), and JNK levels but increased phospho-AMP-activated protein kinase (AMPK). Oleic acid treatment in H9C2 cardiomyocytes also led to cellular lipid accumulation, which was attenuated by TLR4 small interfering RNA. TLR4 deficiency in the cells decreased FA-induced augmentation of MyD88, phospho-p38, and LPL, suggesting that TLR4 may modulate FA-induced lipid metabolism in cardiomyocytes. In addition, although cardiac function was impaired in both diabetic WT NOD and TLR4-deficient NOD animals compared with control nondiabetic mice, this deficit was less in the diabetic TLR4-deficient NOD mice, which had greater ejection fraction, greater fractional shortening, and increased left ventricular developed pressure in the early stages after the development of diabetes compared with their diabetic WT NOD counterparts. Thus, we conclude that TLR4 plays a role in regulating lipid accumulation in cardiac muscle after the onset of type 1 diabetes, which may contribute to cardiac dysfunction.  相似文献   

17.
Long-chain fatty acids (FAs) are the predominant energy substrate utilized by the adult heart. The heart can utilize unesterified FA bound to albumin or FA obtained from lipolysis of lipoprotein-bound triglyceride (TG). We used heart-specific lipoprotein lipase knock-out mice (hLpL0) to test whether these two sources of FA are interchangeable and necessary for optimal heart function. Hearts unable to obtain FA from lipoprotein TG were able to compensate by increasing glucose uptake, glycolysis, and glucose oxidation. HLpL0 hearts had decreased expression of pyruvate dehydrogenase kinase 4 and increased cardiomyocyte expression of glucose transporter 4. Conversely, FA oxidation rates were reduced in isolated perfused hLpL0 hearts. Following abdominal aortic constriction expression levels of genes regulating FA and glucose metabolism were acutely up-regulated in control and hLpL0 mice, yet all hLpL0 mice died within 48 h of abdominal aortic constriction. Older hLpL0 mice developed cardiac dysfunction characterized by decreased fractional shortening and interstitial and perivascular fibrosis. HLpL0 hearts had increased expression of several genes associated with transforming growth factor-beta signaling. Thus, long term reduction of lipoprotein FA uptake is associated with impaired cardiac function despite a compensatory increase in glucose utilization.  相似文献   

18.
Long-chain fatty acids (FA) supply 70-80% of the energy needs for normal cardiac muscle. To determine the sources of FA that supply the heart, [(14)C]palmitate complexed to bovine serum albumin and [(3)H]triolein [triglyceride (TG)] incorporated into Intralipid were simultaneously injected into fasted male C57BL/6 mice. The ratio of TG to FA uptake was much greater for hearts than livers. Using double-labeled Intralipid with [(3)H]cholesteryl oleoyl ether (CE) and [(14)C]TG, we observed that hearts also internalize intact core lipid. Inhibition of lipoprotein lipase (LPL) with tetrahydrolipstatin or dissociation of LPL from the heart with heparin reduced cardiac uptake of TG by 82 and 64%, respectively (P < 0.01). Palmitate uptake by the heart was not changed by either treatment. Uptake of TG was 88% less in hearts from LPL knockout mice that were rescued via LPL expression in the liver. Our data suggest that the heart is especially effective in removal of circulating TG and core lipids and that this is due to LPL hydrolysis and not its bridging function.  相似文献   

19.

Background

Obesity-related diabetes mellitus leads to increased myocardial uptake and oxidation of fatty acids, resulting in a form of cardiac dysfunction referred to as lipotoxic cardiomyopathy. We have shown previously that Astragalus polysaccharides (APS) administration was sufficient to improve the systemic metabolic disorder and cardiac dysfunction in diabetic models.

Methodology/Principal Findings

To investigate the precise role of APS therapy in the pathogenesis of myocardial lipotoxity in diabetes, db/db diabetic mice and myosin heavy chain (MHC)- peroxisome proliferator-activated receptor (PPAR) α mice were characterized and administrated with or without APS with C57 wide- type mice as normal control. APS treatment strikingly improved the myocyte triacylglyceride accumulation and cardiac dysfunction in both db/db mice and MHC-PPARα mice, with the normalization of energy metabolic derangements in both db/db diabetic hearts and MHC-PPARα hearts. Consistently, the activation of PPARα target genes involved in myocardial fatty acid uptake and oxidation in both db/db diabetic hearts and MHC-PPARα hearts was reciprocally repressed by APS administration, while PPARα-mediated suppression of genes involved in glucose utilization of both diabetic hearts and MHC-PPARα hearts was reversed by treatment with APS.

Conclusions

We conclude that APS therapy could prevent the development of diabetic cardiomyopathy through a mechanism mainly dependent on the cardiac PPARα-mediated regulatory pathways.  相似文献   

20.
Adipose triglyceride lipase (ATGL) was recently identified as a rate-limiting triglyceride (TG) lipase and its activity is stimulated by comparative gene identification-58 (CGI-58). Mutations in the ATGL or CGI-58 genes are associated with neutral lipid storage diseases characterized by the accumulation of TG in multiple tissues. The cardiac phenotype, known as triglyceride deposit cardiomyovasculopathy, is characterized by TG accumulation in coronary atherosclerotic lesions and in the myocardium. Recent reports showed that myocardial TG accumulation is significantly higher in patients with diabetes and is associated with impaired left ventricular diastolic function. Therefore, we investigated the roles of ATGL and CGI-58 in the development of myocardial steatosis in the diabetic state. Histological examination with oil red O staining showed marked lipid deposition in the hearts of diabetic fatty db/db mice. Cardiac triglyceride and diglyceride contents were greater in db/db mice than in db/+ control mice. Next, we determined the expression of genes and proteins that affect lipid metabolism, and found that ATGL and CGI-58 expression levels were decreased in the hearts of db/db mice. We also found increased expression of genes regulating triglyceride synthesis (sterol regulatory element-binding protein 1c, monoacylglycerol acyltransferases, and diacylglycerol acyltransferases) in db/db mice. Regarding key modulators of apoptosis, PKC activity, and oxidative stress, we found that Bcl-2 levels were lower and that phosphorylated PKC and 8-hydroxy-2′-deoxyguanosine levels were higher in db/db hearts. These results suggest that reduced ATGL and CGI-58 expression and increased TG synthesis may exacerbate myocardial steatosis and oxidative stress, thereby promoting cardiac apoptosis in diabetic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号