首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine the effect of compound deficiencies in antioxidant defense, we have generated mice (Sod2+/−/Gpx1−/−) that are deficient in Mn superoxide dismutase (MnSOD) and glutathione peroxidase 1 (Gpx1) by breeding Sod2+/− and Gpx1−/− mice together. Although Sod2+/−/Gpx1−/− mice showed a 50% reduction in MnSOD and no detectable Gpx1 activity in either mitochondria or cytosol in all tissues, they were viable and appeared normal. Fibroblasts isolated from Sod2+/−/Gpx1−/− mice were more sensitive (4- to 6-fold) to oxidative stress (t-butyl hydroperoxide or γ irradiation) than fibroblasts from wild-type mice, and were twice as sensitive as cells from Sod2+/− or Gpx1−/− mice. Whole-animal studies demonstrated that survival of the Sod2+/−/Gpx1−/− mice in response to whole body γ irradiation or paraquat administration was also reduced compared with that of wild-type, Sod2+/−, or Gpx1−/− mice. Similarly, endogenous oxidative stress induced by cardiac ischemia/reperfusion injury led to greater apoptosis in heart tissue from the Sod2+/−/Gpx1−/− mice than in that from mice deficient in either MnSOD or Gpx1 alone. These data show that Sod2+/−/Gpx1−/− mice, deficient in two mitochondrial antioxidant enzymes, have significantly enhanced sensitivity to oxidative stress induced by exogenous insults and to endogenous oxidative stress compared with either wild-type mice or mice deficient in either MnSOD or Gpx1 alone.  相似文献   

2.
The first step in the activation of the anti-retroviral nucleoside analogue azidothymidine (AZT) involves its conversion to a 5′-monophosphate. In this study, we have evaluated the role of cytosolic thymidine kinase (Tk), the major enzyme involved in phosphorylating thymidine and its analogues, in the nuclear DNA damage produced by AZT in neonatal mice. Tk+/+, Tk+/− and Tk−/− mice were treated intraperitoneally with 200 mg/kg/day of AZT on postnatal days 1 through 8, and micronuclei were measured in peripheral blood 24 h after the last dose. AZT treatment increased the micronucleus (MN) frequencies to similar extents in both the reticulocytes (RETs) and normochromatic erythrocytes (NCEs) of Tk+/+ and Tk+/− mice; AZT did not increase the frequency of micronucleated RETs (MN-RETs) or micronucleated NCEs (MN-NCEs) in Tk−/− mice. Unexpectedly, neonatal Tk−/− mice treated with the vehicle had significantly elevated MN frequencies for both RETs and NCEs relative to Tk+/+ and Tk+/− mice (e.g., 3.4% MN-RETs and 4.8% MN-NCEs in Tk−/− mice versus 0.7 and 0.6% MN-RETs and MN-NCEs in neonatal Tk+/+ mice). Additional assays performed on untreated Tk−/− mice showed that elevated spontaneous MN frequencies persisted until at least 20 weeks of age, which approaches the average lifespan of Tk−/− mice. These results indicate that metabolism by Tk is necessary for the genotoxicity of AZT in neonatal mice; however, the genotoxicity of AZT is not altered by reducing the Tk gene dose by half. The elevated spontaneous MN frequencies in Tk−/− mice suggest the presence of an endogenous genotoxic activity in these mice.  相似文献   

3.
The tumor suppressor protein p53 is a key regulatory element in the cell and is regarded as the “guardian of the genome”. Much of the present knowledge of p53 function has come from studies of transgenic mice in which the p53 gene has undergone a targeted deletion. In order to provide additional insight into the impact on the cellular regulatory networks associated with the loss of this gene, microarray technology was utilized to assess gene expression in tissues from both the p53−/− and p53+/− mice. Six male mice from each genotype (p53+/+, p53+/−, and p53−/−) were humanely killed and the tissues processed for microarray analysis. The initial studies have been performed in the liver for which the Dunnett test revealed 1406 genes to be differentially expressed between p53+/+ and p53+/− or between p53+/+ and p53−/− at the level of p ≤ 0.05. Both genes with increased expression and decreased expression were identified in p53+/− and in p53−/− mice. Most notable in the gene list derived from the p53+/− mice was the significant reduction in p53 mRNA. In the p53−/− mice, not only was there reduced expression of the p53 genes on the array, but genes associated with DNA repair, apoptosis, and cell proliferation were differentially expressed, as expected. However, altered expression was noted for many genes in the Cdc42-GTPase pathways that influence cell proliferation. This may indicate that alternate pathways are brought into play in the unperturbed liver when loss or reduction in p53 levels occurs.  相似文献   

4.
Proton NMR studies of N,N-diethylformamide (def) exchange on [M(Me6tren)def]2+ where M = Co and Cu yield: kex (298.2K) = 26.3 ± 2.2, 980 ± 70 s−1; ΔH = 58.3 ± 1.7, 36.3 ± 0.9 kJ mol−1; ΔS= −22.2 ± 4.6, −65.9 ± 2.5 J K−1 mol−1; and ΔV = −1.3 ± 0.2, 5.3 ± 0.3 cm3 mol−1 respectively. These data which are consistent with a and d activation modes operating when M = Co and Cu respectively are compared with data for related systems.  相似文献   

5.
Mice carrying two pink-eyed dilution (p) locus heterozygous deletions represent a novel polygenic mouse model of type 2 diabetes associated with obesity. Atp10c, a putative aminophospholipid transporter on mouse chromosome 7, is a candidate for the phenotype. The phenotype is diet-induced. As a next logical step in the validation and characterization of the model, experiments to analyze metabolic abnormalities associated with these mice were carried out. Results demonstrate that mutants (inheriting the p deletion maternally) heterozygous for Atp10c are hyperinsulinemic, insulin-resistant and have an altered insulin-stimulated response in peripheral tissues. Adipose tissue and the skeletal muscle are the targets, and GLUT4-mediated glucose uptake is the specific metabolic pathway associated with Atp10c deletion. Insulin resistance primarily affects the adipose tissue and the skeletal muscle, and the effect in the liver is secondary. Gene expression profiling using microarray and real-time PCR show significant changes in the expression of four genes — Vamp2, Dok1, Glut4 and Mapk14 — involved in insulin signaling. The expression of Atp10c is also significantly altered in the adipose tissue and the soleus muscle. The most striking observation is the loss of Atp10c expression in the mutants, specifically in the soleus muscle, after eating the high-fat diet for 12 weeks. In conclusion, experiments suggest that the target genes and/or their cognate factors in conjunction with Atp10c presumably affect the normal translocation and sequestration of GLUT4 in both the target tissues.  相似文献   

6.
1H NMR line broadening is found to be an effective complimentary method to chemical trapping for determining the rates and activation parameters for organo-metal bond homolysis events that produce freely diffusing radicals. Application of this method is illustrated by measurement of bond homolysis activation parameters for a series of organo-cobalt porphyrin complexes ((TPP)Co-C(CH3)2CN (ΔH = 19.5±0.9 kcal mol−1, ΔS = 12±3 cal°K−1 mol−1), (TMP)Co-C(CH3)2CN (ΔH = 20±1 kcal mol−1S = 13±2 cal°K−1 mol−1), (TAP)Co-C(CH3)2CO2CH3H = 18.2±0.5 kcal mol−1, ΔS = 12±2 cal °K−1 mol−1), (TAP)Co-CH(CH3)C6H5H = 22.5±0.5, ΔS = 17±2 cal °K−1 mol−1)). The line broadening method is particularly useful in determining activation parameters for dissociation of weakly bonded organometallics where the rate of homolysis can exceed the range measurable by conventional chemical trapping methods.  相似文献   

7.
Oxygenation of [CuII(fla)(idpa)]ClO4 (fla=flavonolate; IDPA=3,3′-iminobis(N,N-dimethylpropylamine)) in dimethylformamide gives [CuII(idpa)(O-bs)]ClO4 (O-bs=O-benzoylsalicylate) and CO. The oxygenolysis of [CuII(fla)(idpa)]ClO4 in DMF was followed by electronic spectroscopy and the rate law −d[{CuII(fla)(idpa)}ClO4]/dt=kobs[{CuII(fla)(idpa)}ClO4][O2] was obtained. The rate constant, activation enthalpy and entropy at 373 K are kobs=6.13±0.16×10−3 M−1 s−1, ΔH=64±5 kJ mol−1, ΔS=−120±13 J mol−1 K−1, respectively. The reaction fits a Hammett linear free energy relationship and a higher electron density on copper gives faster oxygenation rates. The complex [CuII(fla)(idpa)]ClO4 has also been found to be a selective catalyst for the oxygenation of flavonol to the corresponding O-benzoylsalicylic acid and CO. The kinetics of the oxygenolysis in DMF was followed by electronic spectroscopy and the following rate law was obtained: −d[flaH]/dt=kobs[{CuII(fla)(idpa)}ClO4][O2]. The rate constant, activation enthalpy and entropy at 403 K are kobs=4.22±0.15×10−2 M−1 s−1, ΔH=71±6 kJ mol−1, ΔS=−97±15 J mol−1 K−1, respectively.  相似文献   

8.
The rate of Hg2+-assisted chloride release from several mer-[CrCl(diamine)(triamine)]2+ complexes has been measured as a function of pressure, Hg2+ concentration and temperature. The calculated activation volumes are independent of [Hg2+] and temperature and kinetic parametes 104 kHg (25 °c) (M−1 s−1), ΔH (kJ mol−1), ΔS (J K−1 mol−1), ΔV (cc mol−1) are: (en)(dpt): 6.44. 75.5, −52, −5.0; (ibn)(dpt): 5.81, 89.5, −6, −0.03; (Me2tn)(dpt): 22.2, 84.9, −11, −0.5; (tn)(dpt): 29.1, 87, −1, +0.3; (en)(2,3-tri): 1.94, 87.0, −24, −5.7; (en)(Medpt): 0.417, 94.6, −11, −0.8; (tn)(Medpt): 9.14, 98.3, +26, +1.8.  相似文献   

9.
The equilibria and dynamics of the disorder-to-order transition of the anionic polysaccharide iota-carrageenan have been studied in the presence of tetramethyl-ammonium salts. By the use of a stopped-flow polarimeter, the rate equation and temperature dependence of the observed forward rate-constant were found to accord with a co-operative dimerisation process. Activation parameters for helix nucleation were shown to be independent of the anion for solutions containing tetramethylammonium chloride and bromide, i.e., ΔH = 1 ±3 kJ.mol−1, ΔS = −178 ±10 J.mol−1.K−1, ΔG298K = 54 ±2 kJ.mol−1, and knuc,298K = 1880 ±80 dm3.mol−1.s−1. The temperature dependence of optical rotation was also shown to be independent of the anion present.  相似文献   

10.
Rates of stepwise anation of cis-Cr(ox)2(H2O2) with SCN/N3, Cr(acac)2(H2O)2+ with SCN and Cr(atda)(H2O)2 with SCN have been investigated in weakly acidic aqueous solutions. Rate constants, kI and kII for the two steps in each system, are composite as kx = kx0+kxX[X] (x = I, II; X = SCN, N3). These rate constants have been evaluated also as the corresponding ΔH and ΔS values. The results obtained and the plausible Id mechanism seem to suggest Cr---OOC bond dissociation (hence a strongly negative ΔS) generating the transition state in each system with outer-sphere association forming the precursor complex in the X dependent paths.  相似文献   

11.
Trapp C  McCullough AK  Epe B 《Mutation research》2007,625(1-2):155-163
Mitochondrial DNA (mtDNA) is assumed to be highly prone to damage by reactive oxygen species (ROS) because of its location in close proximity to the mitochondrial electron transport chain. Accordingly, mitochondrial oxidative DNA damage has been hypothesized to be responsible for various neurological diseases, ageing and cancer. Since 7,8-dihydro-8-oxoguanine (8-oxoG), one of the most frequent oxidative base modifications, is removed from the mitochondrial genome by the glycosylase OGG1, the basal levels of this lesion are expected to be highly elevated in Ogg1−/− mice. To investigate this hypothesis, we have used a mtDNA relaxation assay in combination with various repair enzymes (Fpg, MutY, endonuclease III, endonuclease IV) to determine the average steady-state number of oxidative DNA modifications within intact (supercoiled) mtDNA from the livers of wild-type mice and those deficient in OGG1 and/or the Cockayne syndrome B (CSB) protein for mice aged up to 23 months. The levels of all types of oxidative modifications were found to be less than 12 per million base pairs, and the difference between wild-type and repair-deficient (Ogg1−/−/Csb−/−) mice was not significant. Thus, the increase of 8-oxoG caused by the repair deficiency in intact mtDNA is not much higher than in the nuclear DNA, i.e., not more than a few modifications per million base pairs. Based on these data, it is hypothesized that the load of oxidative base modifications in mtDNA is efficiently reduced during replication even in the absence of excision repair.  相似文献   

12.
13.
P.Muir Wood 《BBA》1974,357(3):370-379
The rate of electron transfer between reduced cytochrome ƒ and plastocyanin (both purified from parsley) has been measured as k = 3.6 · 107 M−1 · s−1, at 298 °K and pH 7.0, with activation parameters ΔH = 44 kJ · mole−1 and ΔS = +46 J · mole−1 · °K−1. Replacement of cytochrome ƒ with red algal cytochrome c-553, Pseudomonas cytochrome c-551 and mammalian cytochrome c gave rates at least 30 times slower: k = 5 · 105, 7.5 · 105 and 1.0 · 106 M−1 · s−1, respectively.

Similar measurements made with azurin instead of plastocyanin gave k = 6 · 106 and approx. 2 · 107 M−1 · s−1 for reaction of reduced azurin with cytochrome ƒ and algal cytochrome respectively.

Rate constants of 115 and 80 M−1 · s−1 were found for reduction of plastocyanin by ascorbate and hydroquinone at 298 °K and pH 7.0. The rate constants for the oxidation of plastocyanin, cytochrome ƒ, Pseudomonas cytochrome c-551 and red algal cytochrome c-553 by ferricyanide were found to be between 3 · 104 and 8 · 104 M−1 · s−1.

The results are discussed in relation to photosynthetic electron transport.  相似文献   


14.
The kinetics of substitution reactions of [η-CpFe(CO)3]PF6 with PPh3 in the presence of R-PyOs have been studied. For all the R-PyOs (R = 4-OMe, 4-Me, 3,4-(CH)4, 4-Ph, 3-Me, 2,3-(CH)4, 2,6-Me2, 2-Me), the reactions yeild the same product [η5-CpFe(CO)2PPh3]PF6, according to a second-order rate law that is first order in concentrations of [η5-CpFe(CO)3]PF6 and of R-PyO but zero order in PPh3 concentration. These results, along with the dependence of the reaction rate on the nature of R-PyO, are consistent with an associative mechanism. Activation parameters further support the bimmolecular nature of the reactions: ΔH = 13.4 ± 0.4 kcal mol−1, ΔS = −19.1 ± 1.3 cal k−1 mol−1 for 4-PhPyO; ΔH = 12.3 ± 0.3 kcal mol−1, ΔS = 24.7 ±1.0 cal K−1 mol−1 for 2-MePyO. For the various substituted pyridine N-oxides studied in this paper, the rates of reaction increase with the increasing electron-donating abilities of the substituents on the pyridine ring or N-oxide basicities, but decrease with increasing 17O chemical shifts of the N-oxides. Electronic and steric factors contributing to the reactivity of pyridine N-oxides have been quantitatively assessed.  相似文献   

15.
High-pressure liquid-chromatography and microcalorimetry have been used to determine equilibrium constants and enthalpies of reaction for the disproportionation reaction of adenosine 5′-diphosphate (ADP) to adenosine 5′-triphosphate (ATP) andadenosine 5′-monophosphate (AMP). Adenylate kinase was used to catalyze this reaction. The measurements were carried out over the temperature range 286 to 311 K, at ionic strengths varying from 0.06 to 0.33 mol kg−1, over the pH range 6.04 to 8.87, and over the pMg range 2.22 to 7.16, where pMg = -log a(Mg2+). The equilibrium model developed by Goldberg and Tewari (see the previous paper in this issue) was used for the analysis of the measurements. Thus, for the reference reaction: 2 ADp3− (ao) AMp2− (ao)+ ATp (ao), K° = 0.225 ± 0.010, ΔG° = 3.70 +- 0.11 kJ mol −1, ΔH° = −1.5 ± 1. 5 kJ mol −1, °S ° = −17 ± 5 J mol−1 K−1, and ACPp°≈ = −46 J mo1l−1 K−1 at 298.15 K and 0.1 MPa. These results and the thermodynamic parameters for the auxiliary equilibria in solution have been used to model the thermodynamics of the disproportionation reaction over a wide range of temperature, pH, ionic strength, and magnesium ion morality. Under approximately physiological conditions (311.15 K, pH 6.94, [Mg2+] = 1.35 × 10−3 mol kg−1, and I = 0.23 mol kg−1) the apparent equilibrium constant (KA′ = m(ΣAMP)m(ΣATP)/[ m(ΣADP)]2) for the overall disproportionation reaction is equal to 0.93 ± 0.02. Thermodynamic data on the disproportionation reaction and literature values for this apparent equilibrium constant in human red blood cells are used to calculate a morality of 1.94 × 10−4 mol kg−1 for free magnesium ion in human red blood cells. The results are also discussed in relation to thermochemical cycles and compared with data on the hydrolysis of the guanosine phosphates.  相似文献   

16.
Carbonylation of the anionic iridium(III) methyl complex, [MeIr(CO)2I3] (1) is an important step in the new iridium-based process for acetic acid manufacture. A model study of the migratory insertion reactions of 1 with P-donor ligands is reported. Complex 1 reacts with phosphites to give neutral acetyl complexes, [Ir(COMe)(CO)I2L2] (L = P(OPh)3 (2), P(OMe)3 (3)). Complex 2 has been isolated and fully characterised from the reaction of Ph4As[MeIr(CO)2I3] with AgBF4 and P(OPh)3; comparison of spectroscopic properties suggests an analogous formulation for 3. IR and 31P NMR spectroscopy indicate initial formation of unstable isomers of 2 which isomerise to the thermodynamic product with trans phosphite ligands. Kinetic measurements for the reactions of 1 with phosphites in CH2Cl2 show first order dependence on [1], only when the reactions are carried out in the presence of excess iodide. The rates exhibit a saturation dependence on [L] and are inhibited by iodide. The reactions are accelerated by addition of alcohols (e.g. 18× enhancement for L = P (OMe)3 in 1:3 MeOH-CH2Cl2). A reaction mechanism is proposed which involves substitution of an iodide ligand by phosphite, prior to migratory CO insertion. The observed rate constants fit well to a rate law derived from this mechanism. Analysis of the kinetic data shows that k1, the rate constant for iodide dissociation, is independent of L, but is increased by a factor of 18 on adding 25% MeOH to CH2Cl2. Activation parameters for the k1 step are ΔH = 71 (±3) kJ mol, ΔS = −81 (±9) J mol−1 K−1 in CH2Cl2 and ΔH = 60(±4) kJ mol−1, ΔS = −93(± 12) J mol−1 K−1 in 1:3 MeOH-CH2Cl2. Solvent assistance of the iodide dissociation step gives the observed rate enhancement in protic solvents. The mechanism is similar to that proposed for the carbonylation of 1.  相似文献   

17.
We have designed and synthesized a series of small peptides containing a perfluoroalkyl ketone group at the C-terminal position of the angiotensin I sequence as inhibitors of human renin. From this series of compounds, 8 and 10 showed strong inhibition of human renin (IC50 = 3 × 10−9, 7 × 10−9 M, respectively). Compound 10 did not inhibit pepsin and cathepsin D at 10−4 M. Comparison of the IC50 of compound 8 and compound 11 (8.7 × 10−7 M) demonstrated the marked effect of the perfluoropropyl group on the potency of inhibition on renin, presumably due to the strong electron-withdrawing effect causing the ketone in 8 to exist predominantly as the hydrate — thus mimicking the tetrahedral transition state during hydrolysis of the scissile Leu10—Val11 amide bond.  相似文献   

18.
Irwin N  Hunter K  Flatt PR 《Peptides》2008,29(6):1036-1041
GIP receptor antagonism with (Pro3)GIP protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat diet. Furthermore, cannabinoid CB1 receptor antagonism with AM251 reduces appetite and body weight gain in mice. The present study has examined and compared the effects of chronic daily administrations of (Pro3)GIP (25 nmol/kg body weight), AM251 (6 mg/kg body weight) and a combination of both drugs in high-fat fed mice. Daily i.p. injection of (Pro3)GIP, AM251 or combined drug administration over 22 days significantly (P < 0.05 to <0.01) decreased body weight compared with saline-treated controls. This was associated with a significant (P < 0.05 to <0.01) reduction of food intake in mice treated with AM251. Plasma glucose levels and glucose tolerance were significantly (P < 0.05) lowered by 22 days (Pro3)GIP, AM251 or combined drug treatment. These changes were accompanied by a significant (P < 0.05) improvement of insulin sensitivity in all treatment groups. In contrast, AM251 lacked effects on glucose tolerance, metabolic response to feeding and insulin sensitivity in high-fat mice when administered acutely. These data indicate that chemical blockade of GIP- or CB1-receptor signaling using (Pro3)GIP or AM251, respectively provides an effective means of countering obesity and related abnormalities induced by consumption of high-fat energy-rich diet. AM251 lacks acute effects on glucose homeostasis and there was no evidence of a synergistic effect of combined treatment with (Pro3)GIP.  相似文献   

19.
In the present paper, the modulation of the basolateral membrane (BLM) Na+-ATPase activity of inner cortex from pig kidney by angiotensin II (Ang II) and angiotensin-(1–7) (Ang-(1–7)) was evaluated. Ang II and Ang-(1–7) inhibit the Na+-ATPase activity in a dose-dependent manner (from 10−11 to 10−5 M), with maximal effect obtained at 10−7 M for both peptides. Pharmacological evidences demonstrate that the inhibitory effects of Ang II and Ang-(1–7) are mediated by AT2 receptor: The effect of both polypeptides is completely reversed by 10−8 M PD 123319, a selective AT2 receptor antagonist, but is not affected by either (10−12–10−5 M) losartan or (10−10–10−7 M) A779, selective antagonists for AT1 and AT(1–7) receptors, respectively. The following results suggest that a PTX-insensitive, cholera toxin (CTX)-sensitive G protein/adenosine 3′,5′-cyclic monophosphate (cAMP)/PKA pathway is involved in this process: (1) the inhibitory effect of both peptides is completely reversed by 10−9 M guanosine 5′-O-(2-thiodiphosphate) (GDPβS; an inhibitor of the G protein activity), and mimicked by 10−10 M guanosine 5′-O-(3-thiotriphosphate) (GTPγS; an activator of the G protein activity); (2) the effects of both peptides are mimicked by CTX but are not affected by PTX; (3) Western blot analysis reveals the presence of the Gs protein in the isolated basolateral membrane fraction; (4) (10−10–10−6 M) cAMP has a similar and non-additive effect to Ang II and Ang-(1–7); (5) PKA inhibitory peptide abolishes the effects of Ang II and Ang-(1–7); and (6) both angiotensins stimulate PKA activity.  相似文献   

20.
Density functional theory (DFT) computations at the B3LYP/Lanl2DZ level were used to elucidate the oxygen atom transfer (OAT) and coupled electron proton transfer (CEPT) reaction steps involved in the biomimetic catalytic cycle performed by polymer-supported MoVIO2(NN′)2 complexes [NN′ = phenyl-(pyrrolato-2-ylmethylene)-amine] with water as oxygen source, trimethyl-phosphane as oxygen acceptor and one-electron oxidising agents. The DFT method employed has been validated against experimental data [X-ray crystal structures of a NN′ ligand and a MoVIO2(NN′)2 complex as well as kinetic data]. The rate-limiting step in the forward-OAT from [MoVIO2] to PMe3 is the attack of PMe3 at an oxo ligand with ΔG (298 K) = 64.6 kJ mol−1. Dissociation of the product OPMe3 is facile with ΔG (298 K) = 26.3 kJ mol−1 giving a mono-oxo [MoIVO] complex which fills its coordination sphere with a further PMe3 substrate with ΔG (298 K) = 39.2 kJ mol−1. One-electron oxidation to a Mo(V) phosphane complex precedes the coordination of water/hydroxide. Additionally, the comproportionation of [MoVIO2] and [MoIVO] to dinuclear oxo-bridged [OMoV–O–MoVO] species has been calculated as the thermodynamic sink in this system and the back-OAT from dmso to mono-oxo [MoIVO] to give [MoVIO2] has been shown to involve an equilibrium between stereoisomeric [MoVIO2] complexes with an activation barrier of ΔG (298 K) = 113.1 kJ mol−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号