首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the nutrient removal capabilities of two red macroalgae, apical blades were cultured in the lab for 4?weeks at either 6, 10, or 17°C and nitrate at either 30 or 300?μM, typical of the seasonal range of conditions at a land-based Atlantic halibut farm. Stocking density was 2.0?g?L?1, irradiance 125?μmol?photons?m?2?s?1, photoperiod 16:8 (L:D), and nitrogen to phosphorus ratio 10:1. For both species, the highest growth rate was at 300?μM NO 3 ? with Palmaria palmata growing fastest at 6°C, 5.8%?day?1, and Chondrus crispus growing best at 17°C, 5.5%?day?1. Nitrogen and carbon removal by P. palmata was inversely related to temperature, the highest rate at 6°C and 300?μM NO 3 ? of 0.47?mg N and 6.3?mg C per gram dry weight per day. In contrast, C. crispus removal of N was independent of temperature, with mean removal of 0.49?mgN?gDW?1?day?1 at 300?μM NO 3 ? . The highest carbon removal by C. crispus was 4.4?mgC?gDW?1?day?1 at 10°C and 300?μM nitrate, though not significantly different from either 6 or 17°C and 300?μM nitrate. Tissue carbon:nitrogen ratios were >20 in both species at 30?μM nitrate, and all temperatures indicating nitrogen limitation in these treatments. Phycoerythrin content of P. palmata was independent of temperature, with means of 23.6?mg?gFW?1 at 300?μM nitrate. In C. crispus, phycoerythrin was different only between 6°C and 17°C at 300?μM nitrate, with the highest phycoerythrin content of 12.6?mg?gFW?1 at 17°C. Morphological changes were observed in P. palmata at high NO 3 ? concentration as curling of the fronds, whilst C. crispus exhibited the formation of bladelets as an effect of high temperature.  相似文献   

2.
The high cost of aeration needed to tumble culture macroalgae is a limiting factor for integration with land-based finfish culture. Toward reducing this electricity cost, we compared intermittent aeration (16 h on:8 h off) with continuous aeration (24 h on) on the productivity of two strains of Chondrus crispus (Basin Head and Charlesville) and Palmaria palmata from Atlantic Canada between May and June 2011. Algal fronds were cultured under a 16:8-h light/dark photoperiod in 50-L tanks supplied with finfish effluent (49 μmol L?1 of ammonium and 11 μmol L?1 of phosphate) at a mean water flow rate of 0.4 L min?1. Nitrogen (N) influx was 1.8 gN m?2 day?1, and phosphorus (P) influx was 0.9 gP m?2 day?1, with uptake rates ranging from 0.02 to 2.4 gN m?2 day?1 and ?0.2 to 0.4 gP m?2 day?1. On average, the macroalgae culture system (algae and biofilms) removed 1.0 gN m?2 day?1 (51.9 %). The growth of macroalgae (pooled across treatment and strain) ranged from 0.5 to 1.6 % day?1, which accounted for a yield of 2.2 to 5.4 g DW m?2 day?1. Switching off aeration at night improved the growth rate of Basin Head Chondrus by 146 % and had no effect on growth rate or nitrogen and carbon removal by P. palmata and Charlesville Chondrus. Growth and yield of Basin Head Chondrus under intermittent aeration were over two times greater than both Charlesville Chondrus treatments.  相似文献   

3.
The selection of seaweed species for their use as biofilters should be based on the knowledge of their nutrient requirements and tolerance to wide variations of nutrient concentrations. Therefore, tolerance and the physiological capabilities of Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta) to growth under nitrate, ammonium, and phosphate variations and to assimilate them into soluble proteins and photosynthetic pigments were evaluated in laboratory conditions. Treatments were composed of sterilized seawater enriched with 25 % von Stosch solution (without nitrogen and phosphorus), and nitrate or ammonium and phosphate were added in combination of 100:1 and 10:1 nitrogen/phosphorus (N/P). Nitrate concentrations varied from 0 to 500 μM, and ammonium concentrations varied from 0 to 50 μM. Growth rates of H. cervicornis increased linearly with addition of ammonium, but with nitrate addition, growth varied following a saturation kinetic, and the highest growth rate (14.45 % d?1) was observed in 200 μM of N/P ratio of 10:1. An excess of nutrients was accumulated as proteins and phycobiliproteins (mainly as allophycocyanin and phycoerythrin) at higher phosphate availability (N/P ratio of 10:1), and H. cervicornis tolerated the highest ammonium and nitrate concentrations (50 and 500 μM, respectively). These physiological responses suggest that this species could be used as biofilter for nutrient removal in eutrophicated seawater and could be cultivated in integrated multitrophic aquaculture systems.  相似文献   

4.
We determined the quantum requirements for growth (1/?μ) and fatty acid (FA) biosynthesis (1/?FA) in the marine diatom, Phaeodactylum tricornutum, grown in nutrient replete conditions with nitrate or ammonium as nitrogen sources, and under nitrogen limitation, achieved by transferring cells into nitrogen free medium or by inhibiting nitrate assimilation with tungstate. A treatment in which tungstate was supplemented to cells grown with ammonium was also included. In nutrient replete conditions, cells grew exponentially and possessed virtually identical 1/?μ of 40–44 mol photons · mol C?1. In parallel, 1/?FA varied between 380 and 409 mol photons · mol C?1 in the presence of nitrate, but declined to 348 mol photons · mol C?1 with ammonium and to 250 mol photons · mol C?1 with ammonium plus tungstate, indicating an increase in the efficiency of FA biosynthesis relative to cells grown on nitrate of 8% and 35%, respectively. While the molecular mechanism for this effect remains poorly understood, the results unambiguously reveal that cells grown on ammonium are able to direct more reductant to lipids. This analysis suggests that when cells are grown with a reduced nitrogen source, fatty acid biosynthesis can effectively become a sink for excess absorbed light, compensating for the absence of energetically demanding nitrate assimilation reactions. Our data further suggest that optimal lipid production efficiency is achieved when cells are in exponential growth, when nitrate assimilation is inhibited, and ammonium is the sole nitrogen source.  相似文献   

5.
We determined the effects of cultivation conditions (nitrogen source, salinity, light intensity, temperature) on the composition of polyunsaturated fatty acids (PUFAs) and the production of eicosapentaenoic acid (EPA) in the laboratory cultured eustigmatophycean microalga, Trachydiscus minutus. T. minutus was capable of utilizing all nitrogen compounds tested (potassium nitrate, urea, ammonium nitrate, ammonium carbonate) with no differences in growth and only minor differences in fatty acid (FA) compositions. Ammonium carbonate was the least appropriate for lipid content and EPA production, while urea was as suitable as nitrates. Salinity (0.2 % NaCl) slightly stimulated EPA content and inhibited growth. Increasing salinity had a marked inhibitory effect on growth and PUFA composition; salinity at or above 0.8 % NaCl was lethal. Both light intensity and temperature had a distinct effect on growth and FA composition. The microalga grew best at light intensities of 470–1,070 μmol photons m?2 s?1 compared to 100 μmol photons m?2 s?1, and at 28 °C; sub-optimal temperatures (20, 33 °C) strongly inhibited growth. Saturated fatty acids increased with light intensity and temperature, whereas the reverse trend was found for PUFAs. Although the highest level of EPA (as a proportion of total FAs) was achieved at a light intensity of 100 μmol photons m?2 s?1 (51.1?± 2.8 %) and a temperature of 20 °C (50.9?±?0.8 %), the highest EPA productivity of about 30 mg L?1?day?1 was found in microalgae grown at higher light intensities, at 28 °C. Overall, for overproduction of EPA in microalgae, we propose that outdoor cultivation be used under conditions of a temperate climatic zone in summer, using urea as a nitrogen source.  相似文献   

6.
The extent to which in-stream processes alter or remove nutrient loads in agriculturally impacted streams is critically important to watershed function and the delivery of those loads to coastal waters. In this study, patch-scale rates of in-stream benthic processes were determined using large volume, open-bottom benthic incubation chambers in a nitrate-rich, first to third order stream draining an area dominated by tile-drained row-crop fields. The chambers were fitted with sampling/mixing ports, a volume compensation bladder, and porewater samplers. Incubations were conducted with added tracers (NaBr and either 15N[NO3 ?], 15N[NO2 ?], or 15N[NH4 +]) for 24–44 h intervals and reaction rates were determined from changes in concentrations and isotopic compositions of nitrate, nitrite, ammonium and nitrogen gas. Overall, nitrate loss rates (220–3,560 μmol N m?2 h?1) greatly exceeded corresponding denitrification rates (34–212 μmol N m?2 h?1) and both of these rates were correlated with nitrate concentrations (90–1,330 μM), which could be readily manipulated with addition experiments. Chamber estimates closely matched whole-stream rates of denitrification and nitrate loss using 15N. Chamber incubations with acetylene indicated that coupled nitrification/denitrification was not a major source of N2 production at ambient nitrate concentrations (175 μM), but acetylene was not effective for assessing denitrification at higher nitrate concentrations (1,330 μM). Ammonium uptake rates greatly exceeded nitrification rates, which were relatively low even with added ammonium (3.5 μmol N m?2 h?1), though incubations with nitrite demonstrated that oxidation to nitrate exceeded reduction to nitrogen gas in the surface sediments by fivefold to tenfold. The chamber results confirmed earlier studies that denitrification was a substantial nitrate sink in this stream, but they also indicated that dissolved inorganic nitrogen (DIN) turnover rates greatly exceeded the rates of permanent nitrogen removal via denitrification.  相似文献   

7.
In the early nineties, Undaria pinnatifida has been accidentally introduced to Nuevo Gulf (Patagonia, Argentina) where the environmental conditions would have favored its expansion. The effect of the secondary treated sewage discharge from Puerto Madryn city into Nueva Bay (located in the western extreme of Nuevo Gulf) is one of the probable factors to be taken into account. Laboratory cultures of this macroalgae were conducted in seawater enriched with the effluent. The nutrients (ammonium, nitrate and phosphate) uptake kinetics was studied at constant temperature and radiation (16?°C and 50 μE m?2 s?1 respectively). Uptake kinetics of both inorganic forms of nitrogen were described by the Michaelis–Menten model during the surge phase (ammonium: V max sur: 218.1 μmol h?1 g?1, K s sur: 476.5 μM and nitrate V max sur: 10.7 μmol h?1 g?1, K s sur: 6.1 μM) and during the assimilation phase (ammonium: V max ass: 135.6 μmol h?1 g?1, K s ass: 407.2 μM and nitrate V max ass: 1.9 μmol h?1 g?1, K s ass: 2.2 μM), with ammonium rates always higher than those of nitrate. Even though a net phosphate disappearance was observed in all treatments, uptake kinetics of this ion could not be properly estimated by the employed methodology.  相似文献   

8.
Along with the search for new species of seaweeds with biofilter capacity, it is also necessary to understand the physiological and biochemical responses of these seaweeds cultivated in different availabilities of nitrate, ammonium, and phosphate. To accomplish this, a laboratory study was performed to evaluate the ability of Hypnea aspera Kützing (Gigartinales, Rhodophyta), to growth under different nitrate, ammonium, and phosphate availabilities and to uptake, assimilate, and remove these nutrients from seawater. Treatments were composed of sterilized seawater enriched with quarter-strength von Stosch’s nutrient solution modified (without any nitrogen and phosphorus compounds). Nitrate or ammonium, together with phosphate, was added in combined N/P ratios of 100:1 and 10:1. Nitrate concentrations varied from 0 to 150 μM, and ammonium concentrations varied from 0 to 70 μM. Growth rates of H. aspera increased with nitrate addition, and the highest value was 4.68 ± 0.76 % day?1 in 150 μM, but the addition of high ammonium concentration (70 μM) in N/P ratio of 10:1 inhibited the growth rates (?3.89 ± 1.03 % day?1). Nitrogen was accumulated as proteins and phycobiliproteins, mainly phycoerythrin, at higher phosphate availability (N/P ratio of 10:1) for nitrate addition (150 μM for proteins and 50, 100, and 150 μM for phycoerythrin), and lower phosphate availability (N/P ratio of 100:1) for ammonium addition (50 and 70 μM for proteins and 50 μM for phycoerythrin). Nitrogen and phosphate were assimilated into thallus in all treatments with nutrient addition. Hypnea aspera showed high removal efficiency (higher than 90 %) of nitrate, nitrite, ammonium, and phosphate present in the seawater. These results suggest that H. aspera could be cultivated in integrated multitrophic aquaculture systems to reduce nutrient loading in eutrophic seawater.  相似文献   

9.
The influence of Potamogeton pectinatus colonisation on benthic nitrogen dynamics was studied in the littoral zone of a lowland pit lake with high nitrate concentration (~200 μM). Our hypothesis was that in aquatic environments where nitrogen availability is not limiting, colonisation by rooted macrophytes changes the dynamics of the benthic nitrogen cycle, stimulating N assimilation and denitrification and increasing the system capacity to take up external nitrogen loads. To test this hypothesis, we quantified and compared seasonal variations of light and dark benthic metabolism, dissolved inorganic nitrogen (DIN) fluxes, denitrification and N assimilation rates in an area colonised by P. pectinatus and a reference site colonised by microphytobenthos. In both areas, the benthic system was net autotrophic and a sink for DIN (2,241–2,644 mmol m?2 y?1). Plant colonisation increased nitrogen losses via denitrification by 30% compared to the unvegetated area. In contrast to what is generally observed in coastal marine systems, where the presence of rooted macrophytes limits denitrification rates, under the very high nitrate concentrations in the studied lake, both denitrification (1,237–1,570 mmol m?2 y?1) and N assimilation (1,039–1,095 mmol m?2 y?1) played important and comparable roles in the removal of DIN from the water column.  相似文献   

10.
Wetland ecosystems in agricultural areas often become progressively more isolated from main water bodies. Stagnation favors the accumulation of organic matter as the supply of electron acceptors with water renewal is limited. In this context it is expected that nitrogen recycling prevails over nitrogen dissipation. To test this hypothesis, denitrification rates, fluxes of dissolved oxygen (SOD), inorganic carbon (DIC) and nitrogen and sediment features were measured in winter and summer 2007 on 22 shallow riverine wetlands in the Po River Plain (Northern Italy). Fluxes were determined from incubations of intact cores by measurement of concentration changes or isotope pairing in the case of denitrification. Sampled sites were eutrophic to hypertrophic; 10 were connected and 12 were isolated from the adjacent rivers, resulting in large differences in nitrate concentrations in the water column (from <5 to 1,133 μM). Benthic metabolism and denitrification rates were investigated by two overarching factors: season and hydrological connectivity. SOD and DIC fluxes resulted in respiratory quotients greater than one at most sampling sites. Sediment respiration was coupled to both ammonium efflux, which increased from winter to summer, and nitrate consumption, with higher rates in river-connected wetlands. Denitrification rates measured in river-connected wetlands (35–1,888 μmol N m?2 h?1) were up to two orders of magnitude higher than rates measured in isolated wetlands (2–231 μmol N m?2 h?1), suggesting a strong regulation of the process by nitrate availability. These rates were also significantly higher in summer (9–1,888 μmol N m?2 h?1) than in winter (2–365 μmol N m?2 h?1). Denitrification supported by water column nitrate (DW) accounted for 60–100% of total denitrification (Dtot); denitrification coupled to nitrification (DN) was probably controlled by limited oxygen availability within sediments. Denitrification efficiency, calculated as the ratio between N removal via denitrification and N regeneration, and the relative role of denitrification for organic matter oxidation, were high in connected wetlands but not in isolated sites. This study confirms the importance of restoring hydraulic connectivity of riverine wetlands for the maintenance of important biogeochemical functions such as nitrogen removal via denitrification.  相似文献   

11.
Griffin JM  Turner MG 《Oecologia》2012,170(2):551-565
Outbreaks of Dendroctonus beetles are causing extensive mortality in conifer forests throughout North America. However, nitrogen (N) cycling impacts among forest types are not well known. We quantified beetle-induced changes in forest structure, soil temperature, and N cycling in Douglas-fir (Pseudotsuga menziesii) forests of Greater Yellowstone (WY, USA), and compared them to published lodgepole pine (Pinus contorta var. latifolia) data. Five undisturbed stands were compared to five beetle-killed stands (4–5 years post-outbreak). We hypothesized greater N cycling responses in Douglas-fir due to higher overall N stocks. Undisturbed Douglas-fir stands had greater litter N pools, soil N, and net N mineralization than lodgepole pine. Several responses to disturbance were similar between forest types, including a pulse of N-enriched litter, doubling of soil N availability, 30–50 % increase in understory cover, and 20 % increase in foliar N concentration of unattacked trees. However, the response of some ecosystem properties notably varied by host forest type. Soil temperature was unaffected in Douglas-fir, but lowered in lodgepole pine. Fresh foliar %N was uncorrelated with net N mineralization in Douglas-fir, but positively correlated in lodgepole pine. Though soil ammonium and nitrate, net N mineralization, and net nitrification all doubled, they remained low in both forest types (<6 μg N g soil?1 NH4 +or NO3 ?; <25 μg N g soil?1 year?1 net N mineralization; <8 μg N g soil?1 year?1 net nitrification). Results suggest that beetle disturbance affected litter and soil N cycling similarly in each forest type, despite substantial differences in pre-disturbance biogeochemistry. In contrast, soil temperature and soil N–foliar N linkages differed between host forest types. This result suggests that disturbance type may be a better predictor of litter and soil N responses than forest type due to similar disturbance mechanisms and disturbance legacies across both host–beetle systems.  相似文献   

12.
Nitrous oxide (N2O) emissions can be significantly affected by the amounts and forms of nitrogen (N) available in soils, but the effect is highly dependent on local climate and soil conditions in specific ecosystem. To improve our understanding of the response of N2O emissions to different N sources of fertilizer in a typical semiarid temperate steppe in Inner Mongolia, a 2-year field experiment was conducted to investigate the effects of high, medium and low N fertilizer levels (HN: 200 kg N?ha-1y-1, MN: 100 kg N ha-1y-1, and LN: 50 kg N ha-1y-1) respectively and N fertilizer forms (CAN: calcium ammonium nitrate, AS: ammonium sulphate and NS: sodium nitrate) on N2O emissions using static closed chamber method. Our data showed that peak N2O fluxes induced by N treatments were concentrated in short periods (2 to 3 weeks) after fertilization in summer and in soil thawing periods in early spring; there were similarly low N2O fluxes from all treatments in the remaining seasons of the year. The three N levels increased annual N2O emissions significantly (P?<?0.05) in the order of MN > HN > LN compared with the CK (control) treatment in year 1; in year 2, the elevation of annual N2O emissions was significant (P?<?0.05) by HN and MN treatments but was insignificant by LN treatments (P?>?0.05). The three N forms also had strong effects on N2O emissions. Significantly (P?<?0.05) higher annual N2O emissions were observed in the soils of CAN and AS fertilizer treatments than in the soils of NS fertilizer treatments in both measured years, but the difference between CAN and AS was not significant (P?>?0.05). Annual N2O emission factors (EF) ranged from 0.060 to 0.298% for different N fertilizer treatments in the two observed years, with an overall EF value of 0.125%. The EF values were by far less than the mean default EF proposed by the Intergovernmental Panel on Climate Change (IPCC).  相似文献   

13.
Nitrogen (N) biogeochemistry of a mature Scots pine (Pinus sylvestris L.) stand subjected to an average total atmospheric N deposition of 48 kg ha?1 year?1 was studied during the period 1992–2007. The annual amount of dissolved inorganic nitrogen (DIN) in throughfall (TF) averaged 34 kg ha?1 year?1 over the 16-year monitoring period. The throughfall fluxes contained also considerable amounts of dissolved organic nitrogen (DON) (5–8.5 kg N ha?1 year?1), which should be incorporated in the estimate of N flux using throughfall collectors. Throughfall DIN fluxes declined at a rate of ?0.9 kg N ha?1 year?1, mainly due to the decreasing TF fluxes of ammonium (NH4), which accounted for 70% to TF DIN. The decrease in TF DIN was accompanied by a decrease in DIN leaching in the seepage water (?1.6 kg N ha?1 year?1), which occurred exclusively as nitrate (NO3 ?). Nitrate losses in the leachate of the forest floor (LFH) equalled the TF NO3 ? delivered to the LFH-layer. On the contrary, about half of the TF NH4 + was retained within the LFH-layer. Approximately 60% of the TF DIN fluxes were leached indicating that N inputs were far in excess of the N requirements of the forest. For DON, losses were only substantial from the LFH-layer, but no DON was leached in the seepage water. Despite the high N losses through nitrate leaching and NO x emission, the forest was still accumulating N, especially in the aggrading LFH-layer. The forest stand, on the contrary, was found to be a poor N sink.  相似文献   

14.
Over the past three decades, Narragansett Bay has undergone various ecological changes, including significant decreases in water column chlorophyll a concentrations, benthic oxygen uptake, and benthic nutrient regeneration rates. To add to this portrait of change, we measured the net flux of N2 across the sediment–water interface over an annual cycle using the N2/Ar technique at seven sites in the bay for comparison with measurements made decades ago. Net denitrification rates ranged from about 10–90 μmol N2–N m?2 h?1 over the year. Denitrification rates were not significantly different among sites and had no clear correlation with temperature. Net nitrogen fixation (?5 to ?650 μmol N2–N m?2 h?1) was measured at three sites and only observed in summer (June–August). Neither denitrification nor nitrogen fixation exhibited a consistent relationship with sediment oxygen demand or with fluxes of nitrite, nitrate, ammonium, total dissolved inorganic nitrogen, or dissolved inorganic phosphate across all stations. In contrast to the mid-bay historical site where denitrification rates have declined, denitrification rates in the Providence River Estuary have not changed significantly over the past 30 years.  相似文献   

15.
To reduce CO2 emissions from alcoholic fermentation, Arthrospira platensis was cultivated in tubular photobioreactor using either urea or nitrate as nitrogen sources at different light intensities (60 μmol m?2 s?1?≤?I?≤?240 μmol m?2 s?1). The type of carbon source (pure CO2 or CO2 from fermentation) did not show any appreciable influence on the main cultivation parameters, whereas substitution of nitrate for urea increased the nitrogen-to-cell conversion factor (Y X/N ), and the maximum cell concentration (X m ) and productivity (P X ) increased with I. As a result, the best performance using gaseous emissions from alcoholic fermentation (X m ?=?2,960?±?35 g m?3, P X ?=?425?±?5.9 g m?3 day?1 and Y X/N ?=?15?±?0.2 g g?1) was obtained at I?=?120 μmol m?2 s?1 using urea as nitrogen source. The results obtained in this work demonstrate that the combined use of effluents rich in urea and carbon dioxide could be exploited in large-scale cyanobacteria cultivations to reduce not only the production costs of these photosynthetic microorganisms but also the environmental impact associated to the release of greenhouse emissions.  相似文献   

16.
The decomposition rate of Potamogeton crispus and its rates of phosphorus (P) release and sedimentation were quantified during natural senescence in a microcosm experiment. The decay of P. crispus was characterized by an exponential model with a mean mass loss coefficient (k) of 0.05 day?1. During the first 10 days, the rapid decomposition phase, k was 0.068 day?1. The rates of P release and total P sedimentation, as well as the dissolved total P, soluble reactive phosphorus, dissolved organic phosphorus, and particulate phosphorus, were quantified throughout the 30-day study period. The nitrogen (N) and P contents of P. crispus increased whereas the carbon (C) content and the C:N, C:P, and N:P ratios decreased near the end of the decomposition phase. In addition, the pH, dissolved oxygen, and redox potential decreased during the rapid release of P. The results indicated that the rate of mass loss was slower from dried plants than from senescent plants. The rapid decomposition rate, which was associated with a high rate of P release, suggests that much of the accumulated P will eventually be returned to the aquatic ecosystem. These data illuminate the mechanisms of decomposition and suggest a strategy of reducing eutrophication by harvesting P. crispus prior to its senescence.  相似文献   

17.
In our study at Mt. Kilimanjaro, East Africa, we quantified gross rates of ammonification, nitrification, nitrogen immobilization, and dissimilatory nitrate reduction to ammonium in soils across different land uses, climate zones (savanna, montane forest ecosystems, extensive agroforest homegarden, and intensively managed coffee plantation), and seasons (dry, wet, and transition from dry to wet season) to identify if and to what extent conversion of natural ecosystems to cultivated land has affected key soil microbial nitrogen turnover processes. Overall variation of gross soil nitrogen turnover rates across different ecosystems was more pronounced than seasonal variations, with the highest turnover rates occurring at the transition between dry and wet seasons. Nitrogen production and immobilization rates positively correlated with soil organic carbon and total nitrogen concentrations as well as substrate availability of dissolved organic carbon and nitrogen r > 0.67, P < 0.05), but did not correlate with soil ammonium and nitrate concentrations. Soil nitrogen turnover rates were highest in the montane Ocotea forest (ammonification 29.84, nitrification 12.67, NH4 + immobilization 38.92, NO3 ? immobilization 10.74, and DNRA 1.54 µg N g?1 SDW d?1) and progressively decreased with decreasing annual rainfall and increasing land-use intensity. Using indicators of N retention and characteristics of soil nutrient status, we observed a grouping of faster, but tighter N cycling in the (semi-) natural savanna and Ocotea forest. This contrasted with a more open N cycle in managed systems (the homegarden and coffee plantation) where N was more prone to leaching or gaseous losses due to high nitrate production rates. The partly disturbed (selected logging) lower montane forest ranged between these two groups.  相似文献   

18.
19.
The vegetative growth and turion formation of Potamogeton crispus, a submersed aquatic macrophyte, was investigated under a range of phosphorus (P) concentrations (0.025, 0.25, 2.5 and 25 mg P L?1) in the ambient water free of algae, aiming to identify the responses of submersed aquatic macrophytes to nutrient enrichment, a common eutrophication problem in China and worldwide. Plant growth was not affected by different P concentrations in terms of biomass accumulation of stems and leaves. However, the contents of chlorophyll a and starch in plants decreased with increasing water P levels, whereas chlorophyll b and carotenoids declined with P level ranging from 0.025 to 2.5 mg P L?1. The soluble sugar content decreased when water P concentration increased up to 2.5 mg L?1. The P content in plants increased with increasing water P levels, whereas plant N content decreased and soluble protein increased when water P concentration increased over 0.25 mg L?1, implying that P. crispus may have modified its metabolism to adapt to water P availability. When P concentration increased to 25 mg L?1, the number and dry matter production of turions per plant decreased significantly. Meanwhile, there was a significant reduction in turion weight and the accumulations of soluble sugar and starch in turion, when water P concentration was over 0.25 mg L?1. The results suggest that turion formation in P. crispus is sensitive to P concentration in the ambient water, and high P levels may lead to decreases in P. crispus populations due to the decline in turion production.  相似文献   

20.
Phycobiliproteins, light-harvesting pigments found in cyanobacteria and in some eukaryotic algae, have numerous commercial applications in food, cosmetic, and pharmaceutical industries. Colorant production from cyanobacteria offers advantages over their production from higher plants, as cyanobacteria have fast growth rate and high photosynthetic efficiency and require less space. In this study, three cyanobacteria strains were studied for phycobiliprotein production and the influence of sodium nitrate, potassium nitrate and ammonium chloride on the growth and phycobiliprotein composition of the strains were evaluated. In the batch culture period of 12 days, Phormidium sp. and Pseudoscillatoria sp. were able to utilize all tested nitrogen sources; however, ammonium chloride was the best nitrogen source for both strains to achieve maximum growth rate μ?=?0.284?±?0.03 and μ?=?0.274?±?0.13 day?1, chlorophyll a 16.2?±? 0.5 and 12.2?±? 0.2 mg L?1, and phycobiliprotein contents 19.38?±?0.09 and 19.99?±?0.14% of dry weight, whereas, for Arthrospira platensis, the highest growth rate of μ?=?0.304?±?0.0 day?1, chlorophyll a 19.1?±?0.5 mg L?1, and phycobiliprotein content of 22.27?±?0.21% of dry weight were achieved with sodium nitrate. The phycocyanin from the lyophilized cyanobacterial biomass was extracted using calcium chloride and food grade purity (A620/A280 ratio >?0.7) was achieved. Furthermore, phycocyanin was purified using two-step chromatographic method and the analytical grade purity (A620/A280 ratio >?4) was attained. SDS-PAGE demonstrated the purity and presence of two bands corresponding to α- and β-subunits of the C-phycocyanin. The results showed that Phormidium sp. and Pseudoscillatoria sp. could be good candidates for phycocyanin production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号