共查询到20条相似文献,搜索用时 15 毫秒
1.
Free amino acid contents in green mutant(G-1) blades and sectored F1gametophytic blades with green andwild-type portions, which were developedfrom heterozygous conchocelis obtained by across between the wild type (0110) and thegreen mutant (G-1) of Porphyrayezoensis, were compared with those of thewild-type blades in laboratory culture. The contents of the major four free aminoacids (aspartic acid, glutamic acid,alanine and taurine) as well as those ofthe total free amino acids were highest inthe green mutant blades, intermediate inthe F1 gametophytic blades, and lowestin the wild-type blades. A similar trendwas obtained in the blades developed frommonospores of the F1 gametophyticblades. In addition, the green-typesectors also had a higher content of thefour major free amino acids and total freeamino acids compared with the wild-typesectors in the F1 blades cultivated ata nori farm. The green mutant ischaracterized by higher contents of thefour major free amino acids compared withthe wild type, which has a higher growthrate. Hence, it is considered that thesectored F1 gametophytic bladesproduced from the heterozygous conchocelishave both parental advantages (high freeamino acid contents and high growth rate)and compensate for both parentaldisadvantages. This seems to be one of thepossible ways of genetic improvement inregards to the taste of nori and stableproduction in Porphyra cultivation. 相似文献
2.
Crosses between genotypically distinct thalli of the monoecious species Porphyra yezoensis were carried out using immature thallus fragments from green- and red-type color mutants and also wild-type thalli. As the genes governing the mutants are monogenic, recessive to the wild-type, and belong to the same linkage group, the degree of self-fertilization could be estimated based on the pigmentation of the resultant diploid conchocelis. The degree of self-fertilization in the cross between the green-type and the wild-type was 48.5–55.0%, and in the cross between the red-type and the wild-type was 45.1–56.5%. In the cross between the green- and red-type mutants, the degree of self-fertilization was 46.0–54.5% when the green-type was the female parent, and was 44.8–55.6% when the red-type was the female parent. 相似文献
3.
Induction and characterization of pigmentation mutants in Porphyra yezoensis (Bangiales, Rhodophyta)
Porphyra yezoensis Ueda conchospore germlings (1–4-cell stages) were treated with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) for inducing mutations.
Three kinds of color-mutated gametophytic blades, which were composed of the mutated cells wholly, sectorially or spottedly,
were obtained; and most of them were sectorially variegated blades. The highest frequency of these mutated blades was 1.3%.
Four different pigmentation mutant strains were obtained by regenerating single cells and protoplasts that were enzymatically
isolated from the mutated sectors of the sectorially variegated blades. The mutants were relatively stable in color in both
gametophytic blade and conchocelis phases. In the two phases, each mutant strain showed characteristic differences in the
in vivo absorption spectra, and had different pigment contents of major photosynthetic pigments (chlorophyll a, phycoerythrin and phycocyanin) as compared with the wild-type and with each other. The gametophytic blades from the four
mutant lines showed significant differences in growth and photosynthetic rates, when they were cultured in the same conditions.
By crossing the mutant with the wild-type, it was found that the color phenotypes of two mutants reported above, were resulted
from two mutations in different genes, respectively.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
4.
Maiko Nakajima Yukihiro Kitade Osamu Iitsuka Satoru Fukuda Naotsune Saga † 《Phycological Research》2000,48(1):15-17
We developed a simple, rapid and stable method for extraction of high molecular weight DNA from the marine red alga Porphyra yezoensis Ueda using both guanidium treatment and QIAGEN? kit (Funakoshi, Tokyo, Japan). The method does not require expensive equipment and complex steps. The DNA yield averaged 1.5 μg 100 mg?1 of Porphyra tissue and the A260/A280 and A230/A260 ratios of the DNA were approximately 1.8 and 0.4, respectively. It was of sufficient quality to be used for not only polymerase chain reactions but also other DNA manipulation techniques such as restriction digestion and construction of genomic libraries. 相似文献
5.
In order to extract DNA rapidly from cultivated Porphyra, we extracted total DNA from conchocelis using the ISOPLANT II kit (Nippon Gene) without liquid nitrogen treatment or CsCl-gradient ultracentrifugation. By confirming the reproducibility of RAPD patterns, it is concluded that the quality of the extracted DNA is sufficient to use as a template for molecular investigation. Using this rapid method, the nuclear ribosomal DNA of the internal transcribed spacer (ITS) regions was amplified from seven strains of cultivated Porphyra, which had been maintained as free-living conchocelis by subculturing in the laboratory. From the amplified DNAs, the ITS-1 sequences were determined in order to identify the species and genetic relationship of the strains. The sequences were identical in the seven strains, and all the strains were identified as P. yezoensis. Furthermore, the gametophytic blades of these strains showed long linear or oblanceolate shapes in the laboratory culture. It was concluded that these strains are P. yezoensis form. narawaensis. This rapid DNA extraction method from conchocelis will be a powerful tool for phylogenetic analysis and for genetic improvement of cultivated Porphyra. 相似文献
6.
Genetic analysis of artificial pigmentation mutants in Porphyra yezoensis Ueda (Bangiales, Rhodophyta) 总被引:4,自引:0,他引:4
Porphyra yezoensis Ueda artificial pigmentation mutants, yel (green), fre (red‐orange) and bop (pink), obtained by treatment with /V‐methyl‐/V′‐nitro‐N‐nitrosoguanidine, were genetically analysed. The mutations associated with color phenotypes are recessive because all of the heterozygous conchocelis resembled the wild type color when they were crossed with the wild type (wt). In the reciprocal crosses of yel × wt, both parental colors and eight types of blades appeared in the F1 gametophytic blades from the heterozygous conchocelis. Both colors segregated in the sectored F1 blades in a 1:1 ratio, indicating that the color pheno‐type of yel resulted from a single mutation in the nuclear gene. In the reciprocal crosses of fre × wt, however, four colors and more than 40 types of blades appeared in the F1 blades from the heterozygous conchocelis, indicating that the color phenotype of fre resulted from two mutations in different genes. In the reciprocal crosses of bop×wt, three colors and 12 types of blades were observed in the F1 blades from the heterozygous conchocelis. Both parental colors appeared far more frequently than the third new color. These results indicated that the color phenotype of bop resulted from two closely linked mutations in different genes, and the epistasis occurred in the F1 blades. The mutants, yel, fre and bop, differ from the spontaneous green (C‐O), the red (H‐25) and the violet (V‐O) mutants of P. yezoensis, respectively. 相似文献
7.
8.
Morphological and AFLP variation of Porphyra yezoensis Ueda form, narawaensis Miura (Bangiales, Rhodophyta) 总被引:4,自引:0,他引:4
Detailed morphological observations were made on two strains of cultivated Porphyra: HG‐1 (pure line isolated from Dai‐1) and Noriken‐4 (parental strain of a pure line HG‐4). The two strains were identified as P. yezoensis f. narawaensis based on their macroscopic and microscopic features, such as long linear or oblanceolate blades up to 50 cm in maximum length, division formulae of spermatangia and zygotosporangia, shape of trichogynes and carpogonia, and the second transverse divisional plane formed at the division from c/2 to c/4 in zygotosporangia. Gametophytic blades from two completely homozygous conchocelis strains isolated in this study (HG‐1 and HG‐4) were cultured under the same conditions and compared to confirm whether the differences in their shapes are genetically determined. The shape of blades from both of conchospores and monospores was always more slender in HG‐4 than in HG‐1 at the same blade age, suggesting that the difference in the blade shape between the two pure lines is due to genetic variation. To estimate the level of genetic variation the two pure lines were subjected to amplified fragment length polymorphism fingerprint analysis. A total of 230 bands were detected in HG‐1 and HG‐4 using eight selective primer pairs, and the number of polymorphic bands was only two in HG‐1. These results indicate that the two pure lines certainly show genetic variation, which is, however, at an extremely low level. The importance of pure‐line breeding and the origin of currently cultivated Porphyra are discussed. This is the first report to identify currently cultivated Porphyra strains in Japan based on combined results of detailed morphological observations and molecular analysis. 相似文献
9.
Evaluation of an improved strain of Porphyra yezoensis Ueda (Bangiales, Rhodophyta) with high-temperature tolerance 总被引:2,自引:0,他引:2
The red algae Porphyra yezoensis has high commercial and nutritional value; however, its cultivation and product quality are jeopardized by global warming. Screening of high-temperature-tolerant strains would greatly reduce cultivation risks and benefit the Porphyra industry. Single somatic cells isolated enzymatically from the wild-type (WT) blades irradiated by 60Co-?? rays were screened at 25°C; one strain, T-17, displayed significant high-temperature resistance. Further culture studies showed that conchospore germlings of T-17 showed 76.2% survival at 23°C and 65.7% survival at 24°C, while the WT conchospore germlings survived at significantly lower percentages of 16.9% and 11.5%, respectively, over a period of 16 days. Furthermore, T-17 conchospore germlings divided at higher percentages of 100% at both 23 and 24°C compared to the WT conchospores with 99.8% and 81.8%, respectively. When the 50-day-old F1 gametophytic blades were transferred from the optimal temperature of 18°C to high temperatures of 23 and 24°C, the T-17 blades sustained growth over a 45-day period without rot, and their mean lengths increased by 20 and 4.2 times, respectively. The mean lengths of WT blades only increased by a factor of 0.6 and 0.4 times and were severely decayed after being cultured for 15 days at high temperatures. The mean wet weights of T-17 blades increased by 418.9 and 195.3 times, but only 7.8 and 4.6 times in WT at 23 and 24°C, respectively. These results indicate that T-17 is superior to WT in growth and high-temperature tolerance, which may offer a new cultivar for the nori industry as a high-temperature-resistant strain to counteract the effects of global warming. 相似文献
10.
Nuclear division of the vegetative cells, conchosporangial cells and conchospores of Porphyra yezoensis (Bangiales, Rhodophyta) 总被引:1,自引:0,他引:1
To confirm the position and timing of meiosis in Porphyra yezoensis Ueda, the nuclear division of vegetative cells, conchosporangial cells and conchospores was observed. An improved staining method using modified carbol fuchsin was introduced to stain the chromosomes of Porphyra. Pit‐connections between conchosporangial cells also stained well with this method. Leptotene, zygotene, pachytene, diplotene, diakinesis, metaphase, anaphase and telophase were observed in the conchosporangial cells. During the germination of conchospores, no characteristics of meiosis I were found. No difference between the nuclear division of vegetative cells and that of conchospores was observed, and 2–3 days were needed for the first cell division both in vegetative cells and conchospores. Therefore, the cell division that occurs during conchospore germination is not meiosis I. Our results indicate that the prophase of meiosis I begins during the formation of conchosporangial branches, and metaphase I, anaphase I and telophase I take place during the maturation of conchosporangial branches. Then the three‐bivalent nucleate sporangia complete cell division to form two individual conchospores, each with one three‐univalent nucleus. The conchospores released from the sporangia are at meiotic interphase. Meiosis II occurs at the first nuclear division during conchospore germination, which is a possible explanation for the observation of mosaic thalli in mutant germlings of P. yezoensis. The mosaic thalli might also arise from gene conversion/post meiotic segregation events, comparable to those in Sordaria fimicola (Roberge ex Desm.) Ces. & De Not. and Neurospora crassa Shear & B.O. Dodge. 相似文献
11.
The present study describes the isolation of pigmentation mutants of Porphyra yezoensis Ueda induced by heavy-ion beam irradiation for the first time. The gametophytic blades were irradiated with 12 C+6 ion beams within a dose range of 25–400 Gy. From the survival rate and cell growth of the irradiated blades, it is suggested that a dose of 150 Gy or less is suitable to induce mutation for the isolation of mutants of P. yezoensis . After irradiation, red, green and deep reddish brown-colored gametophytic blades developed from archeospores that were released from each of the mutated cell clusters of the respective different colors, and the red mutant strain (IBY-R1) and green mutant strain (IBY-G1) were established as a conchocelis colony in culture. Blades of the mutants were characterized by their growth and photosynthetic pigment contents compared with those of the wild-type. From these results, it is clear that heavy-ion beam mutagenesis will be an effective tool for genetic and breeding studies of Porphyra , and also for other algal research. 相似文献
12.
To discriminate between cultivated Porphyra species (Porphyra yezoensis and Porphyra tenera) and closely related wild Porphyra species, we developed a polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) analysis of the rbcL gene using five restriction enzymes. Although our previous PCR‐RFLP analyses of internal transcribed spacer (ITS) rDNA and plastid RuBisCO spacer regions could not always discriminate wild P. yezoensis, wild P. tenera, and closely related wild species, the PCR‐RFLP profiles of the rbcL gene were useful in discriminating samples collected from natural habitats. Therefore, PCR‐RFLP analysis of the rbcL gene will help in the simple identification of a large number of samples, not only for the establishment of reliable cultures as breeding material, but also for the taxonomic investigations of species that are closely related to cultivated Porphyra. 相似文献
13.
High monospore-producing mutants obtained by treatment with MNNG in Porphyra yezoensis Ueda (Bangiales,Rhodophyta) 总被引:2,自引:0,他引:2
Hydrobiologia - Two high monospore-producing pigmentation mutants were obtained by treatment with MNNG in Porphyra yezoensis Ueda. The mutants produced many monospores in young gametophytic blades... 相似文献
14.
In the marine red alga Pyropia yezoensis, commonly known in Japan as nori, sympatric occurrence of two cryptic species Pyropia sp. 2 and Pyropia sp. 3 on the same rock in a natural habitat has been confirmed by molecular analysis and detailed morphological observations. To confirm whether Pyropia sp. 2 and Pyropia sp. 3 were reproductively isolated in the sympatric population, 170 blades that had previously been studied using a maternally inherited plastid marker were examined with a nuclear gene marker. The results suggested that Pyropia sp. 2 and Pyropia sp. 3 with identical morphological features were reproductively isolated in the sympatric population and that they were different species based on the biological species concept. Although gametophytic blades of Pyropia were usually assumed to be haploid, 18 of 170 blades possessed both of the two genotypes derived from Pyropia sp. 2 and from Pyropia sp. 3. These results inferred that allodiploid blades were generated from the interspecific hybridization between these two cryptic species. The present findings provide insights for future studies on the speciation mechanism in seaweeds, particularly for genera that contain numerous species. 相似文献
15.
Two sediment sampling campaigns were conducted in 1978 and 1988 in Lake Geneva (Switzerland). Organic carbon, total nitrogen, total phosphorus and its various forms were analyzed. Results indicate a stability of organic carbon and nitrogen mass, and a significant increase of phosphorus. The variation of phosphorus mass is related to the increase of nonapatite inorganic phosphorus. This study attempts to quantify the phosphorus exchanges at the water sediment interface. The dissolved oxygen level in the bottom water determines the exchange direction. In aerobic conditions, sediments accumulate the excess of phosphorus, while in anaerobic conditions, they constitute an internal source. 相似文献
16.
Temperature, light, nitrogen and phosphorus all had significant effects on the growth of conchocelis colonies of Porphyra columbina Montagne when grown in vitro using a shell substrate. High rates of growth were recorded at 15°C and at 8°C under low light levels. These fight and temperature conditions are similar to those found in the subtidal environment of southern New Zealand coastlines. Little growth occured at 22°C. Nitrogen stimulated growth at concentrations far greater than are likely to be found in situ, while at concentrations of 120 μmol/L and above phosphorus had an inhibitory effect on growth, The culture parameters were strongly interactive in their effect on growth, in particular temperature and light. Conchosporangia formed in all treatments 14 days after alteration of the photoperiod to 10 h light: 14 h dark. Optimal conditions for culture of the conchocelis of P. columbina from southern New Zealand are a water temperature of approximately 15°C, light levels between 10 and 50 μmol m?2s?1 and seawater nitrogen levels maintained above 100 μmol/L. 相似文献
17.
Effects of light photon flux density and spectral quality on photosynthesis and respiration in Porphyra yezoensis (Bangiales, Rhodophyta) 总被引:1,自引:0,他引:1
A comparative study on the effects of photon flux density and spectral quality on photosynthesis and respiration in the marine red alga Porphyra yezoensis Ueda was conducted using a light dispenser. Results showed that the photosynthetic response, expressed in light utilization efficiency (LUE) for preselected wave bands of photosynthetically active radiation, could be ranked as follows: white > green > red > blue. Differences in LUE were also found between conchocelis and gametophyte stages and different strains of the alga. Pre-illumination light compensation, post-illumination light compensation, light saturation, respiration and photorespiration were also measured and compared. The relationships between light exposure, photosynthetic capacity, and the natural environmental conditions are discussed. 相似文献
18.
Porphyra yezoensis, a representative species of intertidal macro-algae, is able to withstand periodic desiccation at low tide but is submerged in seawater at high tide. In this study, changes in photosynthetic electron flow in P. yezoensis during desiccation and re-hydration were investigated. The results suggested that the cyclic electron flow around photosystem I (PSI) increased significantly during desiccation, continued to operate at times of severe desiccation, and showed greater tolerance to desiccation than the electron flow around PSII. In addition, PSI activity in desiccated blades recovered faster than PSII activity during re-hydration. Even though linear electron flow was suppressed by DCMU [3-(3',4'-dichlorophenyl)-1,1-dimethylurea], cyclic electron flow could still be restored. This process was insensitive to antimycin A and could be suppressed by dibromothymoquinone (DBMIB). The prolonged dark treatment of blades reduced the speed in which the cyclic electron flow around PSI recovered, suggesting that stromal reductants, including NAD(P)H, played an important role in the donation of electrons to PSI and were the main cause of the rapid recovery of cyclic electron flow in desiccated blades during re-hydration. These results suggested that cyclic electron flow in P. yezoensis played a significant physiological role during desiccation and re-hydration and may be one of the most important factors allowing P. yezoensis blades to adapt to intertidal environments. 相似文献
19.
Nine primary regenerants were recovered by interspecific protoplast fusion of Porphyra yezoensis Ueda T‐14 (Py) (cultivated Porphyra) and Porphyra tenuipedalis Miura (Pt). This combination is difficult to achieve with conventional sexual hybridization, yet is important in that non‐cultivated P. tenuipedalis is partially resistant (PR) to red rot disease, caused by the microbial pathogen, Pythium porphyrae Takahashi et Sasaki. Out of the nine primary regenerants, two strains (Py‐Pt‐4 and Py‐Pt‐7) were like the parent, P. tenuipedalis, while the rest were like the other cultivated parent P. yezoensis T‐14 in their life cycle. Red rot resistance was assessed in parents and interspecific fusion product progeny (FPP) by exposing the foliose thalli to equivalent infection and measuring two parameters of the host‐pathogen interactions: supported fungal biomass and amount of disease produced. Intermediate resistance between P. yezoensis T‐14 (1.00) and P. tenuipedalis (0.13) was observed in two of the Py‐type FPP, Py‐Pt‐2F2 (0.25) and Py‐Pt‐5F2 (0.23). Stable inheritance of resistance was observed through two subsequent generations. The morphologic and reproductive characteristics of the regenerated foliose thalli, and nature of host‐pathogen interactions were used to further verify the hybrid origin of the FPP. Host‐pathogen interactions were followed using epi‐fluorescence and scanning electron microscopy (SEM). The zoospores encysted at higher rates on the susceptible cultivated parent (P. yezoensis T‐14) germinated immediately and the short germ tubes formed appres‐soria and penetrated the algal cells near the site of encystment. While on the PR parental (P. tenuipedalis) and partially resistant FPP (PRFPP) progeny (Py‐Pt‐2F2 and Py‐Pt‐5F2) the low rate of zoospore encystment was followed by cyst germination, but only a few of the germ tubes formed appressoria and penetrated the thallus surface. Long germ tubes (with no appressoria) were seen growing on the thallus surface without host penetration. The minimal rate of encystment concomitant with low rate of appressorium formation on the PR parent and PRFPP was observed as the major factor responsible for the partial resistance in these thalli. 相似文献
20.
The effect of plant growth substances (PGSs) on conchocelis growth of Alaskan Porphyra (P. abbottiae V. Krishnam., P. pseudolanceolata V. Krishnam., P. pseudolinearis Ueda) was investigated. Growth was measured under different combinations of PGS concentrations (0, 0.1, 0.2, 0.4, 0.8, 1.6, and 3.2 ppm), PGS type (gibberellic acid, kinetin, and indole‐3‐acetic acid), temperature (7, 11, and 15°C), and photoperiod (16:8 light:dark [L:D] cycle and 8:16 L:D cycle). Plant growth substances effectively promoted the growth of Porphyra conchocelis. Depending on culture conditions, growth rates were increased relative to controls 6.9%–31.7% for P. abbottiae, 4.7%–25.7% for P. pseudolanceolata, and 8.9%–35.1% for P. pseudolinearis. Maximal growth of P. abbottiae occurred with 0.8 ppm kinetin, 15°C, and short‐day conditions (8:16 L:D). Porphyra pseudolanceolata exhibited maximal growth with 0.4 ppm indole‐3‐acetic acid, 7°C, and long days (16:8 L:D). Indole‐3‐acetic acid also effected maximal growth of P. pseudolinearis at 0.4 ppm, 15°C, and long‐day conditions (16:8 L:D). For P. abbottiae and P. pseudolinearis, intermediate PGS concentrations (0.4–1.6 ppm) had the greatest growth‐stimulating effects, whereas for P. pseudolanceolata, higher growth generally occurred at lower concentrations (0.1–0.8 ppm). Kinetin and indole‐3‐acetic acid had more influence on the conchocelis phase than gibberellic acid. The PGS concentrations greater than 1.6 ppm had a diminishing effect on growth, especially in P. pseudolanceolata. For P. abbottiae and P. pseudolinearis, higher temperatures resulted in higher growth rates, in contrast to P. pseudolanceolata, which grew faster at the lower temperatures. 相似文献