首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method has been developed for reducing the intrinsic autofluorescence background component in cells labeled with fluorescent antibodies, thus permitting low levels of antibody-binding on highly autofluorescent cells to be quantified. The method is based on the broad autofluorescent excitation spectra compared to the well-defined spectra of the fluorescent label. Two laser wavelengths were used, one optimally to excite the fluorescent label plus autofluorescence and the second to excite only the autofluorescence. Two fluorescence measurements were made in the same wavelength region and the signals were subtracted on a cell-by-cell basis using a difference amplifier to zero the autofluorescence and amplify the signal from the fluorescent label. Test results on unlabeled autofluorescent macrophages showed that the autofluorescence component was reduced by balancing the signal inputs to the difference amplifier. When labeled macrophages were analyzed, the autofluorescence was reduced and the fluorescent-labeled antibody-binding component was amplified. The method was also able to resolve labeled lymphocytes from unlabeled autofluorescent macrophages.  相似文献   

2.
Standard fluorescence microscopy approaches rely on measurements at single excitation and emission bands to identify specific fluorophores and the setting of thresholds to quantify fluorophore intensity. This is often insufficient to reliably resolve and quantify fluorescent labels in tissues due to high autofluorescence. Here we describe the use of hyperspectral analysis techniques to resolve and quantify fluorescently labeled cells in highly autofluorescent lung tissue. This approach allowed accurate detection of green fluorescent protein (GFP) emission spectra, even when GFP intensity was as little as 15% of the autofluorescence intensity. GFP‐expressing cells were readily quantified with zero false positives detected. In contrast, when the same images were analyzed using standard (single‐band) thresholding approaches, either few GFP cells (high thresholds) or substantial false positives (intermediate and low thresholds) were detected. These results demonstrate that hyperspectral analysis approaches uniquely offer accurate and precise detection and quantification of fluorescence signals in highly autofluorescent tissues. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Lipofuscin, an autofluorescent age pigment, occurs in enteric neurons. Due to its broad excitation and emission spectra, it overlaps with commonly used fluorophores in immunohistochemistry. We investigated the pattern of lipofuscin pigmentation in neurofilament (NF)-reactive nitrergic and non-nitrergic human myenteric neuron types. Subsequently, we tested two methods for reduction of lipofuscin-like autofluorescence. Myenteric plexus/longitudinal muscle wholemounts of small intestines of five patients undergoing surgery for carcinoma (aged between 18 and 69 years) were double stained for NF and neuronal nitric oxide synthase (nNOS). Lipofuscin pigmentation patterns were semiquantitatively evaluated by using confocal laser scanning microscopy with three different excitation wave lengths (one for undisturbed lipofuscin autofluorescence and two for specific labellings). Two pigmentation patterns could be detected in the five NF-reactive neuron types investigated. In nitrergic/spiny as well as in non-nitrergic/stubby neurons, coarse, intensely autofluorescent pigment granules were prominent. In non-nitrergic type II, III and V neurons, a fine granular, diffusely distributed and less intensely autofluorescent pigment was obvious. After incubation of wholemounts in either CuSO4 or Sudan black B solutions, unspecific autofluorescence could be substantially reduced whereas specific NF and nNOS fluorescence remained largely unaffected. We conclude that NF immunohistochemistry is useful for morphological representation of subpopulations of human myenteric neurons. The lipofuscin pigmentation in human myenteric neurons reveals at least two different patterns which can be related to distinct neuron types. Incubations of multiply stained whole mounts in both CuSO4 or Sudan black B are suitable methods for reducing autofluorescence thus facilitating discrimination between specific (immunohistochemical) and non-specific (lipofuscin) fluorescence.  相似文献   

4.
Novák K 《Annals of botany》2011,107(4):709-715

Background

Fluorescent tagging of nodule bacteria forming symbioses with legume host plants represents a tool for vital tracking of bacteria inside the symbiotic root nodules and monitoring changes in gene activity. The constitutive expression of heterologous fluorescent proteins, such as green fluorescent protein (GFP), also allows screening for nodule occupancy by a particular strain. Imaging of the fluorescence signal on a macro-scale is associated with technical problems due to the robustness of nodule tissues and a high level of autofluorescence.

Scope

These limitations can be reduced by the use of a model species with a fine root system, such as Vicia tetrasperma. Further increases in the sensitivity and specificity of the detection and in image resolution can be attained by the use of a fluorescence scanner. Compared with the standard CCD-type cameras, the availability of a laser source of a specified excitation wavelength decreases non-specific autofluorescence while the photomultiplier tubes in emission detection significantly increase sensitivity. The large scanning area combined with a high resolution allow us to visualize individual nodules during the scan of whole root systems. Using a fluorescence scanner with excitation wavelength of 488 nm, a band-pass specific emission channel of 532 nm and a long-pass background channel of 555 nm, it was possible to distinguish nodules occupied by a rhizobial strain marked with one copy of cycle3 GFP from nodules colonized by the wild-type strain.

Conclusions

The main limitation of the current plant model and GFP with the wild-type emission peak at 409 nm is a sharp increase in root autofluorescence below 550 nm. The selectivity of the technique can be enhanced by the use of red-shifted fluorophores and the contrasting labelling of the variants, provided that the excitation (482 nm) and emission (737 nm) maxima corresponding to root chlorophyll are respected.  相似文献   

5.
Cells often autofluoresce in response to UV radiation excitation and this can reflect critical aspects of cellular metabolism. Here we report that many different human and murine cell types respond to ionizing radiation with a striking rise in autofluorescence that is dependent on dose and time. There was a highly reproducible fluorescent shift at various wavelengths, which was mirrored by an equally reproducible rise in the vital intracellular metabolic co-factors FAD and NADH. It appears that mitochondria, metabolism and Ca(2+) homeostasis are important for this to occur as cells without mitochondria or cells unable to alter calcium levels did not behave in this way. We believe these radiation-induced changes are of biological importance and that autofluorescence may even provide us with a tool to monitor radiation responses in the clinic.  相似文献   

6.
An unconventional use for the polarization optics, associated with a variety of commercially available fluorescence microplate readers, is reported. This novel application has allowed the discrimination of green fluorescent protein (GFP) fluorescence in genetically modified yeast cells from interfering autofluorescent species. The method exploits the unusually high fluorescence anisotropy of GFP compared to smaller fluorophores and autofluorescent species. The principle was successfully applied to resolve the induced GFP signal from that of autofluorescent test compounds, in an assay for genotoxic species. The use of fluorescence polarization enabled both proflavin and methapyrilene to be identified as genotoxic agents in the yeast assay. This would not have been possible using conventional fluorescence alone since these compounds were found to be intensely autofluorescent at the same wavelength as GFP and thus effectively mask the GFP signal.  相似文献   

7.
《Mycological Research》2006,110(8):887-897
The aim of this study was to reassess the use of autofluorescence for evaluating AM colonization in mycorrhizal roots in the light of criticisms of this method that affirmed that only metabolically inactive arbuscules autofluoresce. It was also investigated whether other mycorrhizal structures, such as hyphae, vesicles and spores, could be detected by autofluorescence, and whether the autofluorescence pattern of AM fungal structures could be exploited methodologically, for example, in the detection and sorting of spores by flow cytometry. Mycorrhizal roots of the palm species Brahea armata, Chamaerops humilis, Phoenix canariensis and Phoenix dactylifera were sectioned and observed by means of fluorescence microscopy. In addition, fungal structures isolated from mycorrhizal roots of P. dactylifera were examined. The same root sections and isolated fungal structures were subjected to vital staining with nitro blue tetrazolium to determine their metabolic state (active or inactive). Moreover, spores of Glomus intraradices, and Glomus clarum were studied by epifluorescence and flow cytometry. Mycorrhizal whole roots of Medicago sativa were also assessed by autofluorescence detection. In contrast to previous reports, the results presented in this paper clearly demonstrate that all fungal structures, both intra- and extraradical, autofluoresced under blue light excitation, regardless of their state (dead or alive). Some arbuscules isolated from roots and mature spores showed further autofluorescence under green light excitation. The source of the autofluorescence was localized in the fungal cell wall. It was shown that AM spores can be detected by flow cytometry. The results support the use of autofluorescence for the evaluation of AM colonization, at least in palm species, and refute previous criticisms of the method.  相似文献   

8.
An enrichment culture of Candidatus Brocadia fulgida was identified by three independent methods: analysis of autofluorescence using different microscope filter blocks and a fluorescence spectrometer, fluorescence in situ hybridization (FISH) with anammox-specific probes and partial sequencing of the 16S rDNA, hydrazine synthase hzsA and hydrazine oxidoreductase hzo. The filter block BV-2A (400–440, 470 LP, Nikon) was suitable for preliminary detection of Ca. B. fulgida. An excitation-emission matrix revealed three pairs of excitation-emission maxima: 288–330 nm, 288–478 nm and 417–478 nm. Several autofluorescent cell clusters could not be stained with DAPI or by FISH, suggesting empty but intact cells (ghost cells) or inhibited permeability. Successful staining of autofluorescent cells with the FISH probes Ban162 and Bfu613, even at higher formamide concentrations, suggested insufficient specificity of Ban162. Under certain conditions, Ca. B. fulgida lost its autofluorescence, which reduced the reliability of autofluorescence for identification and detection. Non-fluorescent Ca. Brocadia cells could not be stained with Ban162, but with Bfu613 at higher formamide concentrations, suggesting a dependency between both parameters. The phylogenetic analysis showed only good taxonomical clustering of the 16S rDNA and hzsA. In conclusion, careful consideration of autofluorescent characteristics is recommended when analysing and presenting FISH observations of Ca. B. fulgida to avoid misinterpretations and misidentifications.  相似文献   

9.
Autofluorescent granules of various sizes were observed in primary human liver endothelial cells (LSECs) upon laser irradiation using a wide range of wavelengths. Autofluorescence was detected in LAMP-1 positive vesicles, suggesting lysosomal location. Confocal imaging of freshly prepared cultures and imaging flow cytometry of non-cultured cells revealed fluorescence in all channels used. Treatment with a lipofuscin autofluorescence quencher reduced autofluorescence, most efficiently in the near UV-area. These results, combined with the knowledge of the very active blood clearance function of LSECs support the notion that lysosomally located autofluorescent material reflected accumulation of lipofuscin in the intact liver. These results illustrate the importance of careful selection of exogenous fluorophores, especially when labelling of live cells where the quencher is not compatible.Key words: Autofluorescence, endogenous fluorophores, liver, endothelial cells, lipofuscin  相似文献   

10.
Representatives of 15 nematode genera were viewed with 450-490-nm epi-illumination and found to autofluoresce. The autofluorescence was limited to 1-5-μm-d globules in the intestinal cells of live nematodes. When adult Pratylenchus penetrans or Caenorhabditis elegans were killed with formaldehyde, freezing, or heat, autofluorescence dispersed throughout the body. Mixed stages of P. penetrans were killed by freezing at several different temperatures. Estimates of survival based on autofluorescence dispersal matched estimates based on mobility more closely than did estimates based on the vital stain, eosin-y.  相似文献   

11.
Localization of mRNA and small RNAs (sRNAs) is important for understanding their function. Fluorescent in situ hybridization (FISH) has been used extensively in animal systems to study the localization and expression of sRNAs. However, current methods for fluorescent in situ detection of sRNA in plant tissues are less developed. Here we report a protocol (sRNA‐FISH) for efficient fluorescent detection of sRNAs in plants. This protocol is suitable for application in diverse plant species and tissue types. The use of locked nucleic acid probes and antibodies conjugated with different fluorophores allows the detection of two sRNAs in the same sample. Using this method, we have successfully detected the co‐localization of miR2275 and a 24‐nucleotide phased small interfering RNA in maize anther tapetal and archesporial cells. We describe how to overcome the common problem of the wide range of autofluorescence in embedded plant tissue using linear spectral unmixing on a laser scanning confocal microscope. For highly autofluorescent samples, we show that multi‐photon fluorescence excitation microscopy can be used to separate the target sRNA‐FISH signal from background autofluorescence. In contrast to colorimetric in situ hybridization, sRNA‐FISH signals can be imaged using super‐resolution microscopy to examine the subcellular localization of sRNAs. We detected maize miR2275 by super‐resolution structured illumination microscopy and direct stochastic optical reconstruction microscopy. In this study, we describe how we overcame the challenges of adapting FISH for imaging in plant tissue and provide a step‐by‐step sRNA‐FISH protocol for studying sRNAs at the cellular and even subcellular level.  相似文献   

12.
We measured picosecond time-resolved fluorescence of intact Photosystem I complexes from Chlamydomonas reinhardtii and Arabidopsis thaliana. The antenna system of C. reinhardtii contains about 30-60 chlorophylls more than that of A. thaliana, but lacks the so-called red chlorophylls, chlorophylls that absorb at longer wavelength than the primary electron donor. In C. reinhardtii, the main lifetimes of excitation trapping are about 27 and 68 ps. The overall lifetime of C. reinhardtii is considerably shorter than in A. thaliana. We conclude that the amount and energies of the red chlorophylls have a larger effect on excitation trapping time in Photosystem I than the antenna size.  相似文献   

13.
Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue.   总被引:19,自引:0,他引:19  
The fluorescent pigment lipofuscin accumulates with age in the cytoplasm of cells of the CNS. Because of its broad excitation and emission spectra, the presence of lipofuscin-like autofluorescence complicates the use of fluorescence microscopy (e.g., fluorescent retrograde tract tracing and fluorescence immunocytochemistry). In this study we examined several chemical treatments of tissue sections for their ability to reduce or eliminate lipofuscin-like autofluorescence without adversely affecting other fluorescent labels. We found that 1-10 mM CuSO4 in 50 mM ammonium acetate buffer (pH 5) or 1% Sudan Black B (SB) in 70% ethanol reduced or eliminated lipofuscin autofluorescence in sections of monkey, human, or rat neural tissue. These treatments also slightly reduced the intensity of immunofluorescent labeling and fluorescent retrograde tract tracers. However, the reduction of these fluorophores was far less dramatic than that for the lipofuscin-like compound. We conclude that treatment of tissue with CuSO4 or SB provides a reasonable compromise between reduction of lipofuscin-like fluorescence and maintenance of specific fluorescent labels.  相似文献   

14.
Multiphoton imaging based on two‐photon excitation is making its way into the clinics, particularly for skin cancer diagnostics. It has been suggested that endogenously formed protoporphyrin IX (PpIX) induced by aminolevulinic acid or methylaminolevulinate can be applied to improve tumor contrast, in connection to imaging of tissue autofluorescence. However, previous reports are limited to cell studies and data from tissue are scarce. No report shows conclusive evidence that endogenously formed PpIX increases tumor contrast when performing multiphoton imaging in the clinical situation. We here demonstrate by spectral analysis that two‐photon excitation of endogenously formed PpIX does not provide additional contrast in superficial basal cell carcinomas. In fact, the PpIX signal is overshadowed by the autofluorescent background. The results show that PpIX should be excited at a wavelength giving rise to one‐photon anti‐Stokes fluorescence, to overcome the autofluorescent background. Thus, this study reports on a plausible method, which can be implemented for clinical investigations on endogenously formed PpIX using multiphoton microscopy (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
A new method of fluorescence detection that promises to increase sensitivity by 20- to 1000-fold is described. This method will also decrease the contribution of sample autofluorescence to the detected signal. The method depends on the coupling of excited fluorophores with the surface plasmon resonance present in thin metal films, typically silver and gold. The phenomenon of surface plasmon-coupled emission (SPCE) occurs for fluorophores 20-250 nm from the metal surface, allowing detection of fluorophores over substantial distances beyond the metal-sample interface. SPCE depends on interactions of the excited fluorophore with the metal surface. This interaction is independent of the mode of excitation; that is, it does not require evanescent wave or surface-plasmon excitation. In a sense, SPCE is the inverse process of the surface plasmon resonance absorption of thin metal films. Importantly, SPCE occurs over a narrow angular distribution, converting normally isotropic emission into easily collected directional emission. Up to 50% of the emission from unoriented samples can be collected, much larger than typical fluorescence collection efficiencies near 1% or less. SPCE is due only to fluorophores near the metal surface and may be regarded as emission from the induced surface plasmons. Autofluorescence from more distal parts of the sample is decreased due to decreased coupling. SPCE is highly polarized and autofluorescence can be further decreased by collecting only the polarized component or only the light propagating with the appropriate angle. Examples showing how simple optical configurations can be used in diagnostics, sensing, or biotechnology applications are presented. Surface plasmon-coupled emission is likely to find widespread applications throughout the biosciences.  相似文献   

16.
BACKGROUND: Fluorescence resonance energy transfer applied in flow cytometry (FCET) is an excellent tool for determining supramolecular organization of biomolecules at the cell surface or inside the cell. Availability of new fluorophores and cytometers requires the establishment of fluorophore dye pairs most suitable for FCET measurements. METHODS: A gastric tumor cell line (N87) was labeled for major histocompatibility complex class I heavy chain and beta2-microglobulin with antibodies conjugated with fluorescein- and indocarbocyanine-like fluorophores and analyzed in FCET measurements on a cell-by-cell basis using three flow cytometers: FACSCalibur, FACSDiVa, and FACSArray. RESULTS: Normalized fluorescence intensity values were measured and normalized energy transfer efficiencies, spectral overlap integrals, and crucial dye- and instrument-dependent parameters were calculated for all matching pairs of seven fluorophores on the three commercial cytometers. The most crucial parameter in determining the applicability of the donor-acceptor pairs was the normalized fluorescence intensity and the least important one was the spectral overlap. CONCLUSIONS: On the basis of available laser lines, the optimal dye pair for all three cytometers is the Alexa546-Alexa647 pair, which produces high energy transfer efficiency values and has the best spectral characteristics with regard to laser excitation, detection of emission, and spectral overlap.  相似文献   

17.
A liquid barrier filter for use in fluorescence microscopy of strongly autofluorescent plant tissues is described. The filter consists of a methanol solution of cupric chloride and ferric chloride and isolates fluorescein fluorescence from the strong red autofluorescence of photosynthetic plant tissues. Subcortical actin cables in the giant alga Chara are being visualized through use of this filter together with heavy meromyosin labeling.  相似文献   

18.
Confocal fluorescence microscopy was used to examine the spectral characteristics of lignin autofluorescence in secondary cell walls of normal and compression wood from Pinus radiata. Using UV excitation, fluorescence spectra of normal and compression wood sections showed significant differences, especially in the outer secondary cell wall of tracheids, with a shift in maxima from violet to blue wavelengths between normal and compression wood. A comparison of normal wood, mild and severe compression wood, showed that the wavelength shift was intermediate in the mild compression wood compared to the severe compression wood, thus offering the possibility of quantifying the severity by measuring ratios of fluorescence at violet and blue wavelengths. Fluorescence induced by blue light, rather than UV, was less well differentiated amongst wood types. Spectral deconvolution indicated the presence of a minimum of five discrete lignin fluorophores in the cell walls of both normal and compression wood tracheids. Comparison with lignin model compounds suggest that the wavelength shift may correspond in part to increased levels of p-hydroxy type lignin in the compression wood samples. The combination of confocal fluorescence imaging and related spectral deconvolution therefore offers a novel technique for characterising cell wall lignin in situ.  相似文献   

19.
20.
Autofluorescent chromatophores were detected in 17 out of 71 zooxanthellate coral species studied. Chromatophores are localized either in the oral gastrodermic (endoderm) or oral epidermis (ectoderm). The pigment granules within the chromatophores (0.5–1.0 m in diameter) show a brilliant light-blue/turquoise autofluorescence (emission between 430 and 500 nm) after excitation with light of 365–410 nm. All species where the autofluorescent gastrodermal chromatophores form a compact layer, embedding the zooxanthellae, belong to the family Agariciidae. In contrast, some species of the Faviidae (2), Pectiniidae (1) and Mussidae (1) were found to have distinct, autofluorescent chromatophores in the oral epidermis. Autofluorescent pigments of the host may enhance photosynthesis of the symbionts as in Leptoseris fragilis. Short wavelength irradiance, less suitable for photosynthesis, is transformed by host pigments into longer wavelengths which are photosynthetically more effective. Thus, host species possessing autofluorescent chromatophores might have selective advantage over non-fluorescent species, and have the potential to survive in light-limited habitats. Furthermore, the daily period of photosynthesis is extended, thus increasing the energy supply and enhancing the deposition of skeletal carbonate. The absence or presence of chromatophores may have value in taxonomy and could putatively be of plalaeontological and palaeoecological interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号