首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An aquatic bacterium capable of eliminating the cyanobacterium Microcystis aeruginosa was isolated from the sediment of an eutrophic lake (Lake Juam, Korea). On the basis of 16S rDNA sequences and biochemical and morphological characteristics, the isolate was determined to be Streptomyces neyagawaensis. It grew optimally at 40 °C and pH 7. In the presence of this bacterium, the biomass of cyanobacterium M. aeruginosa NIES-298 was strongly suppressed, by up to 84.5% in abundance compared to the control. The antialgal activity of S. neyagawaensis depended on the growth phase of the cyanobacterium, but not of the antialgal bacterium. The antialgal activity of S. neyagawaensis was effective against a wide range of algae, including the green alga Chlorella sp., the diatoms Aulacoseira granulata and Stephanodiscus hantzschii, and four cyanobacteria, M. aeruginosa NIES-44, Anabaena cylindrica, Anabaena flos-aquae, and Oscillatoria sancta. S. neyagawaensis indirectly attacked M. aeruginosa by secretion of extracellular antialgal substances that were localized in the bacterial periplasm and had a specific activity of 7.7 U/μg. These results suggest that indigenous bacteria isolated from sediments may have potential application in controlling harmful cyanobacterial blooms in freshwaters.  相似文献   

2.
3.
Microcystis aeruginosa and Microcystis wesenbergii are two cyanobacteria commonly found in eutrophic shallow lakes. Previous studies reported that microcystin-producing M. aeruginosa could have an increased competitive potential on other algae and aquatic plants, and microcystin-LR (MC-LR) was regarded as an allelochemical. Based on this hypothesis, the allelopathic interaction between these two cyanobacteria was studied for the first time under laboratory conditions, and potential allelochemicals were screened. Cyanobacteria biomass and microcystin-LR (MC-LR) concentration were monitored under different culture conditions. The potential allelochemicals from M. aeruginosa were investigated by extract fractionation and GC(LC)/MS analysis. The growth of M. wesenbergii was inhibited by the addition of cell-free filtrates of M. aeruginosa whereas M. aeruginosa was promoted by the addition of cell-free filtrates of M. wesenbergii. The higher polarity the extract of M. aeruginosa is, the stronger the inhibition effect of the extract on M. wesenbergii will be. According to our results, M. aeruginosa has a significant allelopathic inhibition effect on M. wesenbergii. Allelopathic compounds from M. aeruginosa have synergistic effects on inhibition of M. wesenbergii. Besides microcystin, there may be other allelopathic compounds in M. aeruginosa.  相似文献   

4.
In this study, effects of antimony Sb(V) on growth, pigments content, oxygen evolution, and photosystem II (PSII) activity of Microcystis aeruginosa were investigated. JIP-test, Q A ? reoxidation kinetic test and S-state test were used in this study to study the energy distribution and electron transport in PSII. Treatment with Sb(V) at various concentrations ranging from 5 to 100?mg/l had long-term effects on growth, pigments content, and oxygen evolution of M. aeruginosa. Low concentration of Sb(V) had no significant inhibition of the biomass production and PSII activity but inhibited the pigment synthesis. Growth, pigments content, oxygen evolution, and PSII activity were seriously inhibited when treated by high concentration of Sb(V) (100?mg/l). The target sites of Sb(V) toxic effect on the PSII of M. aeruginosa were mainly on the donor side and the apparatus in the light-dependent reaction. The quantum yield for photochemistry, density of reaction centers and photosynthesis performance index decreased, whereas the dissipated energy increased. PSII activity of M. aeruginosa was promoted when exposure to 50?mg/l Sb(V) by increasing the density of active reaction centers and electron transport after Q A ? .  相似文献   

5.
Antialgal allelochemicals were isolated from Phragmites communis Tris. The isolated allelopathic fraction showed strong inhibition activity on the growth of Chlorella pyrenoidosa and Microcystis aeruginosa but had no inhibition on Chlorella vulgaris. The 50% effective concentrations (EC50) of the allelopathic fractions on C. pyrenoidosa and M. aeruginosa were 0.49 and 0.79 mg/liter, respectively. The allelopathic activity of the fraction was species-specific. The isolated allelopathic fraction caused metal ion leakage from algal cells. The fraction decreased the activities of antioxidant enzymes, such as superoxide dismutase and peroxidase. The addition of the isolated fraction increased the concentration of unsaturated lipid fatty acids in cell membrane of C. pyrenoidosa and M. aeruginosa. This caused a change in plasma membrane integrity and the leakage of ions in the protoplast. The allelopathic compound was identified by nuclear magnetic resonance and gas chromatography-mass spectrometry as ethyl 2-methylacetoacetate. Synthesized ethyl 2-methylacetoacetate also showed allelopathic activity on C. pyrenoidosa and M. aeruginosa. The EC50 of synthesized ethyl 2-methylacetoacetate on C. pyrenoidosa and M. aeruginosa were 0.49 and 0.65 mg/liter, respectively.  相似文献   

6.
Cells of the cyanobacterium Nostoc commune secrete a complex, high molecular weight, extracellular polysaccharide (EPS) which accumulates to more than 60% of the dry weight of colonies. The EPS was purified from the clonal isolate N. commune DRH1. The midpoint of the membrane phase transition (Tm) of desiccated cells of N. commune CHEN was low (Tm dry = 8 °C) and was comparable to the Tm of rehydrated cells((Tm)H20 = 6 °C). The EPS was not responsible for the depression of Tm. However, the EPS, at low concentrations, inhibited specifically the fusion of phosphatidylcholine membrane vesicles when they were dried in vitro at0% relative humidity (−400 MPa). Low concentrations of a trehalose:sucrose mixture, in a molar ratio which corresponded with that present in cells in vivo, together with small amounts of the EPS, were efficient in preventing leakage of carboxyfloroscein (CF) from membrane vesicles. Freeze-fracture electron microscopy resolved complex changes in the structure of the EPS and the outer membrane in response to rehydration of desiccated cells. The capacity of the EPS to prevent membrane fusion, the maintenance of a low Tm dry in desiccated cells, and the changes in rheological properties of the EPS in response to water availability, constitute what are likely important mechanisms for desiccation tolerance in this cyanobacterium. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Low concentration of tea (Camellia sinensis (L.) O. Kuntze) was shown to inhibit the growth of the toxic cyanobacterium Microcystis aeruginosa. The inhibition efficiency was 40 % at 0.1 g dry tea/L and 90 % at 0.2 g/L after a 12-day culture. All varieties of tea used in the test could inhibit Microcystis growth, in which the inhibitory effect of green tea was greater than that of black tea. Antialgal allelochemicals were isolated from tea by solvent extraction, gel-chromatography and high performance liquid chromatography. Two algal-inhibition compounds were identified by liquid chromatography/mass spectrometry as epigallocatechin-3-gallate, epicatechin-3-gallate respectively. These are the main polyphenols in tea that have inhibitory effects on the growth of cyanobacteria. The combined effect of these polyphenols makes tea a promising source of algicide to inhibit the growth of algal blooms.  相似文献   

8.
The present study was undertaken to investigate the effects of selenite (SeIV) or selenate (SeVI) on nuclear T3 receptors of rat liver. Selenite at 0.1 μM (p<0.01) inhibited the T3 specific binding to rat liver nuclear receptors. The specific binding of the T3 receptor was fully restored when even 1.0 μM selenite was separated from the T3 receptor by gel filtration. No inhibitory effect of selenite (up to 100 μM) on the T3 binding to nuclear receptor was found in the presence of 1.0 mM dithiothreitol. The rate of dissociation of the T3-nuclear receptor complex was effectively increased by 0.1 μM selenite. Selenate up to 1 mM as well as sulfite or sulfate up to 0.1 mM did not exert an inhibitory effect on T3 receptors. The results based on the in vitro experiments suggest that the selenium in the form of selenite may reversibly affect the T3 binding on the receptor molecule.  相似文献   

9.
何宗祥  刘璐  李诚  张庭廷 《生态学报》2014,34(6):1527-1534
利用大型水生植物的化感作用抑制水华藻类是水域生态学研究的热点课题之一。探讨了不同浓度普生轮藻浸提液对产毒铜绿微囊藻和斜生栅藻(单纯以及混合藻类)的抑制作用,并根据实验过程中得到的数据和数据特征,在传统的Logistic模型和Lotka-Volterra模型基础上,通过微元法建立了普生轮藻浸提液对单纯产毒铜绿微囊藻、单纯斜生栅藻抑制的数学模型以及两藻混合时抑制的数学模型。结果表明,(1)普生轮藻浸提液无论对单独的毒性铜绿微囊藻或斜生栅藻还是共生状态的毒性铜绿微囊藻和斜生栅藻均有很强抑制作用,且对毒性铜绿微囊藻的抑制作用要显著高于对斜生栅藻;(2)所建立的抑藻模型可有效表征和预测在一定范围内的产毒铜绿微囊藻、斜生栅藻及其混合藻在普生轮藻浸提液胁迫下藻密度随时间变化的规律;通过这些模型可方便地计算出实验期间任何时间节点上普生轮藻浸提液的半抑制浓度(EC50)、最小有效浓度(MIC)等指标的预测值、混合藻在小生境中相对稳定时的预测值等等。该研究可为实际抑藻的方案制定和实施提供有价值的数据支撑和参考,具有一定的理论与应用意义。  相似文献   

10.
Allelopathy has been regarded as a mechanism for successful exotic plant invasion. However, it is not clear if and what effects of allelopathic substances may exert on soil nutrient. The exotic plant Mikania micrantha H.B.K. (M. micrantha) has invaded many forests in south China, and recent studies have suggested it has allelopathic potential for other plants and soil microbial community. Thus, we hypothesized that M. micrantha could influence soil nutrients and N transformation through allelopathy. We measured total C and N, NO3 , NH4 + and pH of the soil beneath M. micrantha and the adjacent open soil, and then measured the above soil properties after treating soil with 3 concentrations of aqueous extracts of M. micrantha (T1: 0.005 g ml−1; T2: 0.025 g ml−1; T3: 0.100 g ml−1). In addition, a bioassay was conducted to determine the allelopathic potential of the soil beneath M. micrantha. The results showed that M. micrantha significantly affected soil nutrients and N transformation. Soil beneath M. micrantha had inhibitory effects on seed germination and seedling growth of test plant, and had significantly higher C, N, ammonia, net nitrification rate than those of open soil. The plant extracts decreased soil pH, and T1 decreased it the most, and it increased soil C and N, and T1 represented the greatest increase in both C and N. The extracts also increased both NO3 and NH4 + in soil, whereas no significant difference existed among the 3 extract treatments. Compared to the water control, the soil net mineralization rate was higher under T1, while lower under T2 and T3. However, the extracts increased the soil nitrification rates under all the treatments (T1, T2 and T3). Our results suggest that the water soluble allelochemicals of M. micrantha improve soil nutrient availability, through which the invasive plant M. micrantha may successfully invade and establish in new habitats.  相似文献   

11.
Wang X  Hao C  Zhang F  Feng C  Yang Y 《Bioresource technology》2011,102(10):5742-5748
The effect of pH adjusted by aeration with carbon dioxide (CO2) on the growth of two species of blue-green algae, Microcystis aeruginosa and Anabaena spiroides, was investigated. Three conditions (pH 5.5, 6.0 and 6.5) were found to have significant inhibitory effects on the growth of the two algae species when acidification treatment was conducted during the logarithmic phase. Differences in the inhibition effect of acidification existed between the two species algae. The tolerance of M. aeruginosa to these conditions was also investigated. The results indicated that M. aeruginosa was inhibited significantly, but not dead at pH 6.5, whereas death occurred at pH 5.5 and 6.0. The greatest inhibitory effect of acidification treatment conducted during the stable breeding phase of M. aeruginosa occurred at pH 5.5, while no inhibitory effect was found at pH 6.5.  相似文献   

12.
《Phytochemistry》1987,26(3):637-640
A hydrogenase was isolated from a unicellular and non-nitrogen-fixing cyanobacterium, Microcystis aeruginosa strain NIES 44. The enzyme was easily solubilized and was capable of evolving hydrogen gas in the presence of reduced methyl viologen and benzyl viologen. The enzyme was stimulated by divalent ions and showed a pH optimum around 6.8. The Mr of the enzyme, estimated by gel filtration, was 50 000.  相似文献   

13.
《Aquatic Botany》2005,82(4):284-296
The allelopathic potential of exudates from the aquatic macrophyte Stratiotes aloides on the growth of phytoplankton was investigated. A selection of phytoplankton species, occurring in habitats similar to that of Stratiotes, was used: two cyanobacterial strains (toxic and non-toxic Microcystis aeruginosa), one green alga (Scenedesmus obliquus) and one eustigmatophyte (Nannochloropsis limnetica). The results indicate allelopathic effects of Stratiotes on phytoplankton in six of the eight cases, expressed in an extended duration of the initial biovolume doubling time. The overall inhibitory effect (8–51%) was strain-specific for the two cyanobacteria. We also studied the effect of irradiance on the allelopathic potential of exudates from Stratiotes. Irradiance influenced the response of Scenedesmus only. The inhibitory effect of Stratiotes exudates on the growth of this green alga was stronger at 35 μmol m−2 s−1 than at 105 μmol m−2 s−1. We conclude that Stratiotes has allelopathic effects on phytoplankton, and that irradiance can, but does not always determine the extent of the allelopathic inhibition. In our experiments, the sensitivity of cyanobacteria to Stratiotes exudates was not higher than for other phytoplankton strains, but within cyanobacteria, the toxic strain was more sensitive than the non-toxic one.  相似文献   

14.
The total lipids of the cyanobacterium Microcystis aeruginosa have been isolated and fractionated into its components. Of these lipid components, only the fatty acid-containing fraction inhibited the growth of the green alga Chlorella pyrenoidosa. The inhibitory activity appears to be due to linoleic and linolenic acids, which are both present in significants quantities. These acids may be the substances responsible for the reported toxicity of Microcystis aeruginosa to Chlorella.  相似文献   

15.
Ethanol Synthesis by Genetic Engineering in Cyanobacteria   总被引:3,自引:0,他引:3       下载免费PDF全文
Cyanobacteria are autotrophic prokaryotes which carry out oxygenic photosynthesis and accumulate glycogen as the major form of stored carbon. In this research, we introduced new genes into a cyanobacterium in order to create a novel pathway for fixed carbon utilization which results in the synthesis of ethanol. The coding sequences of pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adh) from the bacterium Zymomonas mobilis were cloned into the shuttle vector pCB4 and then used to transform the cyanobacterium Synechococcus sp. strain PCC 7942. Under control of the promoter from the rbcLS operon encoding the cyanobacterial ribulose-1,5-bisphosphate carboxylase/oxygenase, the pdc and adh genes were expressed at high levels, as demonstrated by Western blotting and enzyme activity analyses. The transformed cyanobacterium synthesized ethanol, which diffused from the cells into the culture medium. As cyanobacteria have simple growth requirements and use light, CO2, and inorganic elements efficiently, production of ethanol by cyanobacteria is a potential system for bioconversion of solar energy and CO2 into a valuable resource.  相似文献   

16.
Bioactive products of the multicellular filamentous benthic cyanobacterium, Pseudanabaena species, isolated from wastewater stabilization ponds at Marrakech, were tested against some pathogenic micro-organisms. Extracellular and intracellular products released by this blue-green alga in the stationary, growth phase, reduced the survival of Escherichia coli, Salmonella sp., Staphylococcus aureus and Candida albicans, and stimulated the growth of non-O1 V. cholerae, whereas no significant effect was noted on the growth of Candida tropicalis. Intracellular substances (methanolic extract) had a stronger inhibitory effect on these micro-organisms than that produced by extracellular substances. These antibacterial and antifungal substances may have a pharmacological value. They may have an important ecological effect on the composition of the bacterial community in Marrakech stabilization ponds when blooms of Pseudanabaena species occurred in this sewage treatment ecosystem during hot periods.  相似文献   

17.
Global warming was believed to accelerate the expansion of cyanobacterial blooms. However, the impact of changes due to the allelopathic effects of cyanobacterial blooms with or without algal toxin production on the ecophysiology of its coexisting phytoplankton species arising from global warming were unknown until recently. In this study, the allelopathic effects of toxic and non-toxic Microcystis aeruginosa strains on the growth of green alga Chlorella vulgaris and photosynthesis of the co-cultivations of C. vulgaris and toxic M. aeruginosa FACHB-905 or non-toxic M. aeruginosa FACHB-469 were investigated at different temperatures. The growth of C. vulgaris, co-cultured with the toxic or non-toxic M. aeruginosa strains, was promoted at 20 °C but inhibited at temperatures ≥25 °C. The inhibitory effects of the toxic and non-toxic M. aeruginosa strains on of the co-cultivations (C. vulgaris and non-toxic M. aeruginosa FACHB-469 or toxic M. aeruginosa FACHB-905) also linearly increased with elevated temperatures. Furthermore, toxic M. aeruginosa FACHB-905 induced more inhibition toward growth of C. vulgaris or Pmax and Rd of the mixtures than non-toxic M. aeruginosa FACHB-469. C. vulgaris dominated over non-toxic M. aeruginosa FACHB-469 but toxic M. aeruginosa FACHB-905 overcame C. vulgaris when they were co-cultured in mesocosms in water temperatures from 20 to 25 °C. The results indicate that allelopathic effects of M. aeruginosa strains on C. vulgaris are both temperature- and species-dependent: it was stimulative for C. vulgaris at low temperatures such as 20 °C, but inhibitory at high temperatures (≥25 °C); the toxic strain was determined to be more harmful to C. vulgaris than the non-toxic one. This suggests that global warming may aggravate the ecological risk of cyanobacteria blooms, especially those with toxic species as the main contributors.  相似文献   

18.
The nucleotide sequence of the complete genome of a cyanobacterium,Microcystis aeruginosa NIES-843, was determined. The genomeof M. aeruginosa is a single, circular chromosome of 5 842 795base pairs (bp) in length, with an average GC content of 42.3%.The chromosome comprises 6312 putative protein-encoding genes,two sets of rRNA genes, 42 tRNA genes representing 41 tRNA species,and genes for tmRNA, the B subunit of RNase P, SRP RNA, and6Sa RNA. Forty-five percent of the putative protein-encodingsequences showed sequence similarity to genes of known function,32% were similar to hypothetical genes, and the remaining 23%had no apparent similarity to reported genes. A total of 688kb of the genome, equivalent to 11.8% of the entire genome,were composed of both insertion sequences and miniature inverted-repeattransposable elements. This is indicative of a plasticity ofthe M. aeruginosa genome, through a mechanism that involveshomologous recombination mediated by repetitive DNA elements.In addition to known gene clusters related to the synthesisof microcystin and cyanopeptolin, novel gene clusters that maybe involved in the synthesis and modification of toxic smallpolypeptides were identified. Compared with other cyanobacteria,a relatively small number of genes for two component systemsand a large number of genes for restriction-modification systemswere notable characteristics of the M. aeruginosa genome.  相似文献   

19.
The marine bacterium Pseudoalteromonas sp. strain A28 was able to kill the diatom Skeletonema costatum strain NIES-324. The culture supernatant of strain A28 showed potent algicidal activity when it was applied to a paper disk placed on a lawn of S. costatum NIES-324. The condensed supernatant, which was prepared by subjecting the A28 culture supernatant to ultrafiltration with a 10,000-Mw-cutoff membrane, showed algicidal activity, suggesting that strain A28 produced extracellular substances capable of killing S. costatum cells. The condensed supernatant was then found to have protease and DNase activities. Two Pseudoalteromonas mutants lacking algicidal activity, designated NH1 and NH2, were selected after N-methyl-N′-nitrosoguanidine mutagenesis. The culture supernatants of NH1 and NH2 showed less than 15% of the protease activity detected with the parental strain, A28. The protease was purified to homogeneity from A28 culture supernatants by using ion-exchange chromatography followed by preparative gel electrophoresis. Paper-disk assays revealed that the purified protease had potent algicidal activity. The purified protease had a molecular mass for 50 kDa, and the N-terminal amino acid sequence was determined to be Ala-Thr-Pro-Asn-Asp-Pro. The optimum pH and temperature of the protease were found to be 8.8 and 30°C, respectively, by using succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as a substrate. The protease activity was strongly inhibited by phenylmethylsulfonyl fluoride, diisopropyl fluorophosphate, antipain, chymostatin, and leupeptin. No significant inhibition was detected with EDTA, EGTA, phenanthroline or tetraethylenepentamine. These results suggest that Pseudoalteromonas sp. strain A28 produced an extracellular serine protease which was responsible for the algicidal activity of this marine bacterium.  相似文献   

20.
  • 1.1. Diurnal cycles of body temperature, Tb, and energy metabolism, M, at different ambient temperatures (Ta: +5 −+ 32°C) were tested in 13 sunbird species from various habitats and of different body masses (5.2–14.2 g) including one of the smallest passerines, Aethopyga christinae.
  • 2.2. Resting M-level (night) reaches Ta-dependent mean values of 54% (+5°C) and 49% (+25°C) of activity M-levels (day). Expected level is ca 75%.
  • 3.3. Resting metabolic rate of sunbirds lies within the range of theoretically expected values for birds.
  • 4.4. Mean linear metabolism-weight regression of the night values follows: M = 0.102 × W0.712 (M = energy metabolism in kJ/hr and W = body mass in g).
  • 5.5. Thermal conductances, Tc, are lower (−24%) than the predicted values. This is caused by a decrease of Tb at low Ta. Mean nocturnal Tc is 3.2 J/g × hr × °C, mean day-time value is 4.3 J/g × hr × °C.
  • 6.6. The zone of thermoneutrality is, in most species, within a Ta-range of 24–28°C.
  • 7.7. Normal day and night levels of Tb are in the same range as reported for other birds of the same weight class. Tb decreases slightly with falling Ta (partial heterothermia). Lowest recorded Tb was 34.2°C.
  • 8.8. No species tested showed any sign of torpor at night, independent of Ta, body mass or habitat origin.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号