首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Cyanobacteria produce phosphatases in response to phosphorus deficiency as some other autotrophs. However, little has been documented on the effects of key climate change factors, such as temperature rise and solar UV radiation (280–400 nm), on cyanobacterial alkaline phosphatase activity. Here, we found that the terrestrial cyanobacterium Nostoc flagelliforme showed higher activity of the enzyme with increasing temperature and pH levels, exhibiting maximal values at 45 °C and pH?11, respectively. However, when exposed to solar radiation in the presence of UV-A (320–400 nm) and UV-B (280–320 nm), significant reduction of the enzyme activity was observed at a photosynthetically active radiation (PAR) level of 300 W?m?2 (1,450 μmol photons m?2 s?1), which is equivalent or lower than the noontime level of solar PAR at the organism's habitats. UV-A and UV-A + UV-B induced about 21 and 39 % inhibition of the enzyme activity in the 3-h exposures. The decrease in the activity of phosphatase can be attributed to the UV radiation-induced inactivation of the enzyme and indirectly to the UV radiation-induced production of reactive oxygen species.  相似文献   

2.
The terrestrial cyanobacterium Nostoc flagelliforme , inhabiting arid areas, withstands prolonged periods of dehydration. How dehydration and occasional wetting affect inorganic C acquisition in this organism is not well known. As inorganic C acquisition in cyanobacteria often involves carbonic anhydrases (CA), we studied the effect of cycles of hydration and dehydration on the extracellular and intracellular CA activities, at the pH values presumably associated with dew or rain wetting. The external CA of N. flagelliforme (or of the microorganismal consortium of which N. flagelliforme is the main component) is activated by hydration, especially at low pH, and it may facilitate inorganic C acquisition when N. flagelliforme colonies are wetted by dew. Internal CA is present in dry colonies and is rapidly inactivated upon rehydration, therefore an anaplerotic role for this enzyme is proposed.  相似文献   

3.
Solar UV-B (280–315 nm) induces the synthesis of phycoerythrin (PE) in a Nostoc species isolated from the Andean high altitude lake Yanaqocha. The outdoor experiments were carried out in a small lake in Erlangen, Germany, using natural conditions. After 2- and 4-h exposure to solar radiation, the immunodetection signal using monoclonal antibodies anti-PE was lower in control cells (exposed to PAR + UV-A) than in cells exposed to total solar radiation (PAR + UV-A + UV-B). Cells exposed at depths in which no UV-B penetrated showed no differences from control cells regarding PE content. When exposed to monochromatic radiation of 280, 300 or 360 nm, purified PE was photodegraded in a wavelength dependent manner resulting in different polypeptide fragments carrying chromophore groups. Immunodetection revealed active synthesis of PE in parallel to photodamage by solar UV-B indicating that PE is important for photoadaptation to shorter wavelengths in the cyanobacterium Nostoc sp.  相似文献   

4.
5.
The effects of organic carbon sources on cell growth and exopolysaccharide (EPS) production of dissociated Nostoc flagelliforme cells under mixotrophic batch culture were investigated. After 7?days of cultivation, glycerol, acetate, sucrose, and glucose increased the final cell density and final EPS concentrations, and mixotrophic growth achieved higher biomass concentrations. The increase in cell growth was particularly high when glucose was added as the sole carbon source. On the other hand, EPS production per dry cell weight was significantly enhanced by adding acetate. For more effective EPS production, the effects of the mixture of glucose and acetate were investigated. Increasing the ratio of glucose to acetate resulted in higher growth rate with BG-11 medium and higher EPS productivity with BG-110 medium (without NaNO3). When the medium was supplemented with a mixture of glucose (4.0?g?L?1) and acetate (2.0?g?L?1), 1.79?g?L?1 biomass with BG-11 medium and 879.6?mg?L?1 of EPS production with BG-110 medium were achieved. Adopting this optimal ratio of glucose to acetate established in flask culture, the culture was also conducted in a 20-L photobioreactor with BG-11 medium for 7?days. A maximum biomass of 2.32?g?L?1 was achieved, and the EPS production was 634.6?mg?L?1.  相似文献   

6.
Nostoc flagelliforme is a terrestrial cyanobacterium with high economic value. Dissociated cells separated from a natural colony of N. flagelliforme were cultivated for 7 days under either phototrophic, mixotrophic or heterotrophic culture conditions. The highest biomass, 1.67 g L−1 cell concentration, was obtained under mixotrophic culture, representing 4.98 and 2.28 times the biomass obtained in phototrophic and heterotrophic cultures, respectively. The biomass in mixotrophic culture was not the sum as that in photoautotrophic and heterotrophic cultures. During the first 4 days of culture, the cell concentration in mixotrophic culture was lower than the sum of those in photoautotrophic and heterotrophic cultures. However, from the 5th day, the cell concentration in mixotrophic culture surpassed the sum of those obtained from the other two trophic modes. Although the inhibitor of photosynthetic electron transport DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] efficiently inhibited autotrophic growth of N. flagelliforme cells, under mixotrophic culture they could grow by using glucose. The addition of glucose changed the response of N.flagelliforme cells to light. The maximal photosynthetic rate, dark respiration rate and light compensation point in mixotrophic culture were higher than those in photoautotrophic cultures. These results suggest that photoautotrophic (photosynthesis) and heterotrophic (oxidative metabolism of glucose) growth interact in mixotrophic growth of N. flagelliforme cells.  相似文献   

7.
The UV-B and desiccation-tolerant terrestrial cyanobacterium Nostoc commune was grown under defined UV irradiation. Proteome changes were monitored in the membrane and the cytosolic and the extracellular fractions. Tools were developed to separate stress-triggered from growth stage-dependent changes. UV-B changed the relative cellular concentration of 493 out of 1,350 protein spots at least by a factor of three, rendering the UV-B stimulon of N. commune the most complex one described so far. It comprises two different parts: an early shock response influencing 214 proteins and a late acclimation response involving 279 proteins. The shock response comprised many membrane or membrane-associated proteins, whereas the acclimation response mainly changed cytosolic proteins. Most of the shock-induced changes were transient and did not overlap with the acclimation response. In the extracellular fraction, UV irradiation induced superoxide dismutase and the water stress protein. In total, 27 intracellular, UV-B-induced proteins were partially sequenced by electrospray ionization tandem mass spectrometry. Three functional classes were identified: proteins involved in lipid metabolism, in carbohydrate metabolism and in regulatory pathways. About 50% of the sequenced proteins were homologous to cyanobacterial database entries with un-known function. Interestingly, all of these proteins belong to the UV-B acclimation response. We conclude that the UV-B shock response and the UV-B acclimation response represent two completely different and remarkably complex strategies of N. commune to protect itself against UV-B radiation in its natural environment.  相似文献   

8.
Light is the crucial environmental signal for desiccation-tolerant cyanobacteria to activate photosynthesis and prepare for desiccation at dawn. However, the photobiological characteristics of desert cyanobacteria adaptation to one of the harshest habitats on Earth remain unresolved. In this study, we surveyed the genome of a subaerial desert cyanobacterium Nostoc flagelliforme and identified two phytochromes and seven cyanobacteriochromes (CBCRs) with one or more bilin-binding GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domains. Biochemical and spectroscopic analyses of 69 purified GAF-containing proteins from recombinant phycocyanobilin (PCB), biliverdin or phycoerythrobilin-producing Escherichia coli indicated that nine of these proteins bind chromophores. Further investigation revealed that 11 GAFs form covalent adducts responsive to near-UV and visible light: eight GAFs contained PCB chromophores, three GAFs contained biliverdin chromophores and one contained the PCB isomer, phycoviolobilin. Interestingly, COO91_03972 is the first-ever reported GAF-only CBCR capable of sensing five wavelengths of light. Bioinformatics and biochemical analyses revealed that residue P132 of COO91_03972 is essential for chromophore binding to dual-cysteine CBCRs. Furthermore, the complement of N. flagelliforme CBCRs is enriched in red light sensors. We hypothesize that these sensors are critical for the acclimatization of N. flagelliforme to weak light environments at dawn.  相似文献   

9.
Liquid cultures of the terrestrial cyanobacterium Nostoc commune derived from field material were treated with artificial UV-B and UV-A irradiation. We studied the induction of various pigments which are though to provide protection against damaging UV-B irradiation. First, UV-B irradiation induced an increase in carotenoids, especially echinenone and myxoxanthophyll, but did not influence production of chlorophyll a. Second, an increase of an extracellular, water-soluble UV-A/B-absorbing mycosporine occurred, which was associated with extracellular glycan synthesis. Finally, synthesis of scytonemin, a lipid-soluble, extracellular pigment known to function as a UV-A sunscreen, was observed. After long-time exposure, the UV-B effect on carotenoid and scytonemin synthesis ceased whereas the mycosporine content remained constantly high. The UV-B sunscreen mycosporine is exclusively induced by UV-B (< 315 nm). The UV-A sunscreen scytonemin is induced only slightly by UV-B (< 315 nm), very strongly by near UV-A (350 to 400 nm), and not at all by far UV-A (320 to 350 nm). These results may indicate that the syntheses of these UV sunscreens are triggered by different UV photoreceptors.  相似文献   

10.
水分对发状念珠藻生理活性的影响   总被引:4,自引:1,他引:4  
研究了水分对发状念珠藻(Nostor flagelliforme Born.et Flah.)生理活性的影响作用。结果表明:干藻体在湿润的过程中,呼吸、光合和固氮活性依次恢复;且随水分含量的增加,光合活性和固氮活性逐渐增强,呼吸作用缓慢减弱并在一定水平上保持相对稳定,自由水是束缚水8倍左右时发菜生理活性全面恢复。吸水饱和的藻体在干燥过程中,光合、呼吸、固氮作用依次停止;呼吸作用随水分的丧失逐渐下降;固氮活性、光合活性在水分丧失20%~40%时有一定程度的增强,出现活性高峰;此后,生理活性下降,水分完全丧失时,光合作用终止,呼吸和固氮作用极其微弱。试验证明,水分是发状念珠藻生理活性的重要限制因子,适宜的水分有助于发菜维持正常的生理代谢和生长。  相似文献   

11.
The terrestrial cyanobacterium Nostoc flagelliforme Berk. et M. A. Curtis has been a popular food and herbal ingredient for hundreds of years. To meet great market demand and protect the local ecosystem, for decades researchers have tried to cultivate N. flagelliforme but have failed to get macroscopic filamentous thalli. In this study, single trichomes with 50 to 200 vegetative cells were induced from free-living cells by low light and used to investigate the morphogenesis of N. flagelliforme under low UV-B radiation and periodic desiccation. Low-fluence-rate UV-B (0.1 W m(-2)) did not inhibit trichome growth; however, it significantly increased the synthesis of extracellular polysaccharides and mycosporine-like amino acids and promoted sheath formation outside the trichomes. Under low UV-B radiation, single trichomes developed into filamentous thalli more than 1 cm long after 28 days of cultivation, most of which grew separately in liquid BG11 medium. With periodic desiccation treatment, the single trichomes formed flat or banded thalli that grew up to 2 cm long after 3 months on solid BG11 medium. When trichomes were cultivated on solid BG11 medium with alternate treatments of low UV-B and periodic desiccation, dark and scraggly filamentous thalli that grew up to about 3 cm in length after 40 days were obtained. In addition, the cultivation of trichomes on nitrogen-deficient solid BG11 medium (BG11(0)) suggested that nitrogen availability could affect the color and lubricity of newly developed thalli. This study provides promising techniques for artificial cultivation of N. flagelliforme in the future.  相似文献   

12.
发菜(Nostoc flagelliforme)培养条件的研究   总被引:10,自引:1,他引:10  
研究了光照强度、日供水次数、CO2浓度和培养基成分对发菜生长的影响。结果显示,中度光强(114μmol.m-2.s-1)下发菜生长最快;发菜的生长基本同供水次数成正相关系;CO2浓度的升高并没有显著促进发菜生长,低光条件下(57μmol.m-2.s-1),高浓度的CO2(2800μL/L)抑制了发菜的生长;用BG11培养的发菜生物量的增长显著高于用BG110培养的;BG11培养基中K+和CO32-的缺失并没有显著影响发菜的生长。  相似文献   

13.
Nostoc flagelliforme is a terrestrial cyanobacterium, and water is one of the most important factors limiting its photosynthetic yield. The aims of the present study were to investigate the effect of cell water amount on photosynhetic yield and the role of NADPH dehydrogenase (NDH-1)-mediated cyclic electron transport in this effect. The role of NDH-1-mediated cyclic electron transport was assessed by measuring NDH-1 expression, several chlorophyll fluorescence parameters, and photosynthetic O2 evolution at several time points after cell water had been redried. The results indicated that the highest rate of NDH-1-mediated cyclic electron transport, reflected by post-illumination increase in chlorophyll fluorescence and NDH-1 amount, was only obtained when the cells contained about 1.8 times water relative to dry weight. This was consistent with observed changes in photosynthetic yield, reflected by O2 evolution. However, the highest photochemical activity of photosystem II, reflected by F v/F m and qP, could be maintained when N. flagelliforme cells included water in a broad range. This implies that the effect of cell water amount on photosynthetic yield is related to NDH-1-mediated cyclic electron transport. The possible mechanisms of this effect are discussed.  相似文献   

14.
The application of antibiotic treatment with assistance of metabolomic approach in axenic isolation of cyanobacterium Nostoc flagelliforme was investigated. Seven antibiotics were tested at 1–100 mg L?1, and order of tolerance of N. flagelliforme cells was obtained as kanamycin > ampicillin, tetracycline > chloromycetin, gentamicin > spectinomycin > streptomycin. Four antibiotics were selected based on differences in antibiotic sensitivity of N. flagelliforme and associated bacteria, and their effects on N. flagelliforme cells including the changes of metabolic activity with antibiotics and the metabolic recovery after removal were assessed by a metabolomic approach based on gas chromatography–mass spectrometry combined with multivariate analysis. The results showed that antibiotic treatment had affected cell metabolism as antibiotics treated cells were metabolically distinct from control cells, but the metabolic activity would be recovered via eliminating antibiotics and the sequence of metabolic recovery time needed was spectinomycin, gentamicin > ampicillin > kanamycin. The procedures of antibiotic treatment have been accordingly optimized as a consecutive treatment starting with spectinomycin, then gentamicin, ampicillin and lastly kanamycin, and proved to be highly effective in eliminating the bacteria as examined by agar plating method and light microscope examination. Our work presented a strategy to obtain axenic culture of N. flagelliforme and provided a method for evaluating and optimizing cyanobacteria purification process through diagnosing target species cellular state.  相似文献   

15.
Recovery processes of photosynthetic systems during rewetting were studied in detail in a terrestrial, highly drought-tolerant cyanobacterium, Nostoc commune. With absorption of water, the weight of N. commune colony increased in three phases with half-increase times of about 1 min, 2 h and 9 h. Fluorescence intensities of phycobiliproteins and photosystem (PS) I complexes were recovered almost completely within 1 min, suggesting that their functional forms were restored very quickly. Energy transfer from allophycocyanin to the core-membrane linker peptide (L(CM)) was recovered within 1 min, but not that from L(CM) to PSII. PSI activity and cyclic electron flow around PSI recovered within 2 min, while the PSII activity recovered in two phases after a time lag of about 5 min, with half times of about 20 min and 2 h. Photosynthetic CO(2) fixation was restored almost in parallel with the first recovery phase of the PSII reaction center activity. Although the amount of absorbed water became more than 20 times the initial dry weight of the N. commune colony in the presence of sufficient water, about twice the initial dry weight was enough for recovery and maintenance of the PSII activity.  相似文献   

16.
紫外线辐射对生物体危害日趋严重,逐渐引起了人们的重视.由于蓝藻在生物进化中的特殊性和在生态系统中的重要性,用于研究UV-B对生物体的影响具有诸多优势,目前国内关于UV-B对蓝藻的影响相关报道较少.本文介绍了近年来国外该领域的相关研究,主要包括UV-B对蓝藻生物量、生理效应,特别是光合作用等方面的影响,同时着重介绍了蓝藻中的紫外吸收物质的研究现状,并进一步探讨了其应用情况.  相似文献   

17.
发菜培养条件的研究(简报)   总被引:6,自引:0,他引:6  
在Ca^2+、10mg.L^-1NAA、10mg.L^-1GA作用下,干湿节律为干1d、湿1d发菜生长有较大的促进作用,生长14d发菜灌体最高增长率为35%.  相似文献   

18.
19.
Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review   总被引:11,自引:0,他引:11  
Nostoc flagelliforme, which is distributed in arid or semiarid steppes of the west and west-northern parts of China, has been used by the Chinese as a food delicacy and for its herbal values for hundreds of years. However, the resource is being over-exploited and is diminishing, while the market demands are increasing with the economic growth. This review deals mainly with the Chinese studies on the ecology, physiology, reproduction, morphology and culture of this species in an attempt to promote research and development of its cultivation technology. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Rodrigo Lois 《Planta》1994,194(4):498-503
Irradiation ofArabidopsis with ultraviolet (UV) light resulted in intensity- and wavelength-dependent increases in the levels of a small family of UV-absorbing flavonoids, which accumulate in the aerial parts of the plants. A gradient of sensitivity to UV-B radiation is described in the different leaves of developingArabidopsis plants whereby the earliest formed leaves become damaged by UV-B faster and more extensively than later formed leaves. This UV-sensitivity gradient tightly parallels differences in constitutive as well as UV-induced levels of flavonoid accumulation among the various leaves, suggesting a direct role of flavonoids in protection against damage by UV radiation. The level of accumulated flavonoids, both constitutive and UV-induced, in each leaf appear to be dependent on the specific developmental state of each leaf as well as the overall developmental state of the plant. The UV-mediated flavonoid response, along with the observed UV-induced damage, appear not to be systemic inArabidopsis but restricted very closely to the irradiated areas of leaves.I am deeply indebted to Robert Fischer and Bob Buchanan for providing access to their laboratories and for their invaluable help without which this work could not have been realized. I especially wish to thank Lola Peñarrubia, Elena del Campillo, Patrick Neil and Julie Montgomery for innumerable and fruitful discussions. This work was supported by Cooperative State Research Service, U.S. Department of Agriculture, under Agreements Nos. 90-37280-5664 and 90-372780-5808.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号