首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance to oleandomycin in Streptomyces antibioticus, the producer organism, was studied. The organism was highly resistant in vivo to the antibiotic but sensitive to other macrolides and lincosamides. Protein synthesis in vivo by mycelium of S. antibioticus was more resistant to oleandomycin than that by mycelium of Streptomyces albus G, an oleandomycin-sensitive strain, and this resistance was dependent on the age of the culture, older mycelium of S. antibioticus being more resistant to oleandomycin than young mycelium. [3H]Oleandomycin was capable of binding to the same extent to the 50S subunits of the ribosomes of both organisms. Oleandomycin also inhibited in vitro protein synthesis by ribosomes obtained from an oleandomycin-production medium at the time when maximum levels of oleandomycin were being produced. A clear difference between the ability of the two organisms to incorporate exogenous oleandomycin was observed. Thus, while S. albus G took up oleandomycin, S. antibioticus showed a decreased permeability to the antibiotic, suggesting a role for cell permeability in self-resistance.  相似文献   

2.
Thermomonospora sp. T-SA-125 is a true thermophilic actinomycete isolated from a soil sample collected from the Saudi Arabian desert. It is characterized by the formation of single spores at the tips of dichotomously branched aerial mycelium and differs from Thermomonospora curvata and T. viridis in certain aspects. It produces a basic water-soluble antibiotic which is active against Gram-positive bacteria, moderately active against Gram-negative bacteria and inactive against fungi. At high concentrations, this antibiotic, stimulated the growth of both Hordeum coleoptile and lettuce hypocotyl.  相似文献   

3.
Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37 degrees C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.  相似文献   

4.
Chounghwamycin A, a new antitumor antibiotic produced by a strain of Streptomyces sp. No. PL-D-5, was isolated and characterized. It appeared to belong to the actinomycin group of antibiotics from physico-chemical studies and has an empirical formula of C63H88N11O21. The antibiotic is extractable into an organic solvent from the fermentation broth, possessing potent antileukemic activity against P388 mouse leukemia in mice and antimicrobial activity against Gram-positive bacteria with MIC values about 0.1-0.4 microgram/ml, but showed no activity on Gram-negative bacteria, yeast and fungi tested.  相似文献   

5.
An antibiotic complex active against multiply resistant strains of staphylococci and other Gram-positive bacteria was isolated from cultures of Streptomyces albus G. Silica gel and Sephadex LH-20 column chromatography gave two congeners with Mr values of 786 and 772, which differed by one -CH2-group. The two homologues contained an isothiocyanate group, and proved to be identical with paulomycins A and B produced by Streptomyces paulus; the FAB mass spectra, in addition, proved the same two congeners to be present in proceomycin obtained from Streptomyces alboniger.  相似文献   

6.
An active respiratory chain system was demonstrated in sonically treated mycelium of Streptomyces antibioticus, the producer of antimycin A. The respiratory electron transfer from substrate to oxygen proceeded successively through flavoprotein(s), b-, c-, and a-type cytochromes, and terminated with the cyanide-sensitive cytochrome oxidase. The cytochrome composition of the culture was not affected by the age of the mycelium, the intensity of antimycin A production, or differences in the media. Slater factor, coenzyme Q, and vitamin K were not interposed as hydrogen carriers in the respiratory chain between flavoproteins and cytochromes. The oxidation of reduced nicotinamide adenine dinucleotide and succinate was unaffected by antimycin A. Evidence is presented in support of the absence of the antimycin A-sensitive site from the electron transport system of S. antibioticus.  相似文献   

7.
Abstract Streptomyces antibioticus strain TÜ 99, from which a wide variety of active compounds had been isolated previously, was reinvestigated using an HPLC photoconductivity screening system. Four new compounds were isolated, characterized and their constitutions determined. All four were α,β-unsaturated γ-lactones; the most abundant compound 3 (C10H16O4), as well as compound 1 (C9H14O4) had a hydroxy group at C(5) of the lactone ring. The four lactones showed antibiotic activity against Pseudomonas aeruginosa and also a weak inhibition of the chitinase from Serratia marcescens .  相似文献   

8.
Abstract Colonies of Streptomyces antibioticus were studied by transmission and scanning electron microscopy. The micrographs show that substrate mycelium growth takes place among an intercellular material and this mycelium is covered by a surface film. This structure could be a boundary between the aerial mycelium and the substrate mycelium.  相似文献   

9.
Colletotrichum gloeosporioides is the causal agent of anthracnose in mango. Burkholderia cepacia XXVI, isolated from mango rhizosphere and identified by 16S rDNA sequencing as a member of B. cepacia complex, was more effective than 6 other mango rhizosphere bacteria in inhibiting the model mango pathogen, C. gloeosporioides ATCC MYA 456. Biocontrol of this pathogen was demonstrated on Petri-dishes containing PDA by > 90 % reduction of surface colonization. The nature of the biocontrol metabolite(s) was characterized via a variety of tests. The inhibition was almost exclusively due to production of agar-diffusible, not volatile, metabolite(s). The diffusible metabolite(s) underwent thermal degradation at 70 and 121 °C (1 atm). Tests for indole acetic acid production and lytic enzyme activities (cellulase, glucanase and chitinase) by B. cepacia XXVI were negative, indicating that these metabolites were not involved in the biocontrol effect. Based on halo formation and growth inhibition of the pathogen on the diagnostic medium, CAS-agar, as well as colorimetric tests we surmised that strain XXVI produced a hydroxamate siderophore involved in the biocontrol effect observed. The minimal inhibitory concentration test showed that 0.64 μg ml(-1) of siderophore (Deferoxamine mesylate salt-equivalent) was sufficient to achieve 91.1 % inhibition of the pathogen growth on Petri-dishes containing PDA. The biocontrol capacity against C. gloeosporioides ATCC MYA 456 correlated directly with the siderophore production by B. cepacia XXVI: the highest concentration of siderophore production in PDB on day 7, 1.7 μg ml(-1) (Deferoxamine mesylate salt-equivalent), promoted a pathogen growth inhibition of 94.9 %. The growth of 5 additional strains of C. gloeosporioides (isolated from mango "Ataulfo" orchards located in the municipality of Chahuites, State of Oaxaca in Mexico) was also inhibited when confronted with B. cepacia XXVI. Results indicate that B. cepacia XXVI or its siderophore have the potential to be used as a biological control agent against C. gloeosporioides; thus diminishing environmental problems caused by the current practices to control this disease.  相似文献   

10.
The specific growth rate of Streptomyces antibioticus, a producer of oleandomycin, and the specific rate of the antibiotic accumulation in the culture medium during fermentation were investigated. On the basis of the results obtained the fermentation period was divided into 7 phases of development. The culture treated with the surfactant (Tween-21) is characterized by a higher specific growth rate during the whole fermentation and a higher specific rate of the antibiotic accumulation at the stage of the highest production as compared to the control. The ATP content, the value of the adenylate energy charge and the contents of high-molecular weight polyphosphates in the mycelium were examined. In the phase of the intensive growth St. antibioticus was characterized by a higher ATP level and a higher energy charge. More active accumulation of polyphosphates was observed in the late intensive growth phase. It was also found that after the treatment of the culture with Tween-21 it utilized polyphosphates more actively during the antibiotic biosynthesis.  相似文献   

11.
Saadoun I  Hameed KM  Moussauui A 《Microbios》1999,99(394):173-179
Nine different isolates of aquatic actinomycetes identified as Streptomyces spp. were studied for their morphological and cultural characteristics. One of these isolates (C4-S, Streptomyces violaceusniger) was extensively studied for its inhibitory effect against a wide range of Gram-positive, Gram-negative bacteria, Mycobacterium vaccae ATCC 29678, Candida albicans and several food associated filamentous fungi and yeasts. Most of these were characterized by flexous sporophore morphology and their inability to produce cultural pigments. Bioassay results indicated that S. violaceusniger of 10 days culture age was highly active against Gram-positive cocci and bacilli with an inhibition zone of 16-25 mm, and slightly active against M. vaccae ATCC 29678 with an inhibition zone of 5-10 mm. The inhibitory effect was slight against Escherichia coli, Aspergillus niger 1 and C. albicans with an inhibition zone of 8-10 mm for each of them. There was no inhibitory effect of S. violaceusniger against other Gram-negative bacteria, filamentous fungi and yeast. The nature of the active molecule produced by S. violaceusniger showed a maximum absorption in the UV region at 210-260 nm.  相似文献   

12.
A bacterial strain, SCE2, identified as Bacillus polymyxa, produced an anti-microbial substance active against yeasts, fungi and different genera of Gram-positive and-negative bacteria, in liquid medium and in plate assays. This substance appeared to be an antibiotic different from the polymyxin group, mainly because of its action against the majority of Gram-positive bacteria tested and its lack of activity against Pseudomonas aeruginosa, a species usually killed by polymyxins. Preliminary characterization showed resistance to heat (65°C, 2 h), to proteases, trypsin, lysozyme, deoxyribonuclease I, ribonuclease A, phospholipase C, ethanol, acetone, chloroform, ether and to strong alkali treatment (2 M NaOH). The molecular weight was less than 3500. The B. polymyxa strain harboured a plasmid that did not correlate with antibiotic production; after curing experiments, a derivative strain, SCE2(46), was isolated that lacked the plasmid pES1, but showed the same inhibitory spectrum as the wild-type strain.  相似文献   

13.
Pseudomonas aeruginosa and Burkholderia cepacia are the major pathogens that colonize the airway surface and cause progressive respiratory failure and high mortality, especially in cystic fibrosis (CF) patients. Tobramycin is the treatment of choice, but persistent usage enables the infectious organisms to activate defence mechanisms, making eradication rarely successful. Combinations of antibiotic and nonantibiotic compounds have been tested in vitro against P. aeruginosa and B. cepacia , but with mixed results. Sodium ions interfere with the bacterial tobramycin uptake system, but amiloride partially reverses this antagonism. In this pilot study, we extend previous findings of the effectiveness of tobramycin in combination with amiloride and other nonantibiotics against a P. aeruginosa type strain, and against four P. aeruginosa strains and one Burkholderia cenocepacia strain isolated from CF patients. Significantly, the four clinical P. aeruginosa strains were tobramycin resistant. We also find that Na+ and K+, but not Cl, are the chief antagonists of tobramycin efficacy. These results suggest that chemotherapy for CF patients might not only be compromised by antibiotic-resistant pathogens alone, but by a lack of penetration of antibiotics caused either by bacterial biofilms or the high sodium flux in the CF lung, or by antagonistic effects of some drug combinations, any of which could allow the persistence of drug-susceptible bacteria.  相似文献   

14.
Antibacterial activities were detected in thirty-six bacteria from six soil samples. One strain designated as Mz-7 produced an inhibitory substance which was active against number of Gram-positive bacteria as well as clinical isolates obtained from a local hospital. Strain Mz-7 was identified asBacillus subtilis by 16S rRNA sequence analysis and standard biochemical tests. Maximum production was observed at mid of stationary phase slightly before sporulation took place. Optimum conditions for growth were standardised. The antibiotic product was purified by chloroform precipitation and detected by polyacrylamide gel electrophoresis and mass spectrometry. It has lipopeptide nature and did not lose its activity on treatment at different pH values, temperatures and enzymes. The pronounce activity against multidrug resistant clinical isolates and the favourable biochemical properties of this antibiotic from the newly isolate strain suggest a new and effective agent against resistance in pathogenic microbes.  相似文献   

15.
When glucose is substituted for sucrose in the fermentation medium for Streptomyces antibioticus, the pH of the cultural broth becomes more acidic, the rate of protein synthesis in the mycelium rises, and the rate of oleandomycin synthesis decreases abruptly. The dynamics of cAMP (cyclic monophosphate) accumulation was studied in the process of biosynthesis by the culture in different media. Most of the synthesized cAMP (80-90%) was shown to be excreted into the medium. Glucose stimulates cAMP synthesis and excretion from the mycelium by a factor of 1.5-3. No distinct correlation was found between cAMP content in S. antibioticus cells and the level of oleandomycin biosynthesis. A correlation between changes in the concentration of exocellular cAMP and protein synthesis in the mycelium suggests that the excreted cAMP may be involved in regulating the growth of the culture producing the antibiotic.  相似文献   

16.
The flagellar protein (flagellin) was isolated and purified from strains of Pseudomonas aeruginosa, Burkholderia cepacia and Stenotrophomonas maltophilia. A significant difference was observed in the molecular weight of different flagellin preparations obtained from these bacterial isolates. Antiserum prepared against S. maltophilia flagellin did not react with flagellin of P. aeruginosa or/and B. cepacia on Immunoblot or in indirect ELISA. In addition the anti-flagellin did not agglutinate P. aeruginosa and B. cepacia. No inhibition of motility of P. aeruginosa and B. cepacia was observed in presence of antiserum; though the latter inhibited the motility of S. maltophilia. The results of the present study prove that no specific relationship existed among all the studied flagellar proteins obtained from closely related bacteria.  相似文献   

17.
Of the 316 actinomycetes strains isolated from various habitats, Streptomyces sp. strain JJ45 showed the strongest antibiotic activity against the plant pathogenic bacteria Xanthomonas campestris pv. campestris and was thus chosen for further study. The 16S rRNA gene sequence (1500 bp) and rpoB gene partial sequence (306 bp) of Streptomyces strains JJ45A and JJ45B were determined. The respective strain JJ45B sequences exhibited 96.8% identity with the Streptococcus gelaticus 16S rRNA gene sequence and 98.4% identity with the Streptococcus vinaceus ATCC 27478 rpoB partial sequence. The fermentation broth of the JJ45B strain was extracted to find an inhibitor of bacterial growth. The distilled water extract showed the highest activity against pathogenic bacteria. The active molecule was isolated by column chromatography on polyacrylamide or silica gel, thin-layer chromatography, and HPLC. It showed growth inhibition activity only toward phytopathogenic Xanthomonas sp. The structure of the compound was identified as α- l -sorbofuranose (3→2)-β- d -altrofuranose based on the interpretation of the nuclear magnetic resonance spectra.  相似文献   

18.
Streptomyces glaucescens ETH 22794 produced a variety of antibiotic substances. Besides low molecular weight antibiotics like hydroxystreptomycin and the tetracenomycins, this strain excreted glaucescin, a high molecular weight product with bacteriocin-like properties. In plate tests the antagonism of glaucescin against Streptomyces canadiensis was masked by the large inhibition zone caused by the tetracenomycins. Glaucescin activity was revealed when a tetracenomycin-resistant mutant of S. canadiensis NRRL 3155 was used as an indicator. Glaucesin was produced on complex and minimal solid and liquid media. It was not inducible by mitomycin C. The killing activity of glaucescin was thermolabile and resistant to DNAase, RNAase, various proteinases, and lipase. Its apparent molecular weight was estimated as 196000 by gel filtration and glycerol gradient centrifugation. Glaucescin preferentially killed outgrowing spores of S. canadiensis. Resting spores and mycelium were considerably less sensitive to the inhibitor, and adsorption of glaucescin by S. canadiensis paralleled sensitivity. The activity spectrum of the bacteriocin was restricted to spore-forming Actinomycetales. Non spore-forming nocardiae and a variety of Gram-positive and Gram-negative bacteria were resistant to glaucescin.  相似文献   

19.
Burkholderia cepacia complex (Bcc) bacteria are opportunistic pathogens that cause multiresistant pulmonary infections in patients with cystic fibrosis (CF). In this study, we evaluated the in vitro antimicrobial efficacy of eight unsaturated fatty acids against Burkholderia cenocepacia K56-2, a CF epidemic strain. Docosahexaenoic acid (DHA) was the most active compound. Its action can be either bacteriostatic or bactericidal, depending upon the concentration used. The effect of DHA was also evaluated on two others B.?cenocepacia clinical isolates and compared with one representative member of all the 17 Bcc species. To test whether DHA could have a therapeutic potential, we assessed its efficacy using a Galleria mellonella caterpillar model of B.?cenocepacia infection. We observed that the treatment of infected larvae with a single dose of DHA (50 mM) caused an increase in the survival rate as well as a reduced bacterial load. Moreover, DHA administration markedly increases the expression profile of the gene encoding the antimicrobial peptide gallerimycin. Our results demonstrate that DHA has in vitro and in vivo antibacterial activity against Bcc microorganisms. These findings provide evidence that DHA may be a useful nutraceutical for the treatment of CF patients with lung infections caused by antibiotic multiresistant Bcc microorganisms.  相似文献   

20.
Two exocellular nucleases with molecular masses of 18 and 34 kDa, which are nutritionally regulated and reach their maximum activity during aerial mycelium formation and sporulation, have been detected in Streptomyces antibioticus. Their function appears to be DNA degradation in the substrate mycelium, and in agreement with this proposed role the two nucleases cooperate efficiently with a periplasmic nuclease previously described in Streptomyces antibioticus to completely hydrolyze DNA. The nucleases cut DNA nonspecifically, leaving 5'-phosphate mononucleotides as the predominant products. Both proteins require Mg2+, and the additional presence of Ca2+ notably stimulates their activities. The two nucleases are inhibited by Zn2+ and aurin tricarboxylic acid. The 18-kDa nuclease from Streptomyces is reminiscent of NUC-18, a thymocyte nuclease proposed to have a key role in glucocorticoid-stimulated apoptosis. The 18-kDa nuclease was shown, by amino-terminal protein sequencing, to be a member of the cyclophilin family and also to possess peptidylprolyl cis-trans-isomerase activity. NUC-18 has also been shown to be a cyclophilin, and "native" cyclophilins are capable of DNA degradation. The S. antibioticus 18-kDa nuclease is produced by a proteolytic processing from a less active protein precursor. The protease responsible has been identified as a serine protease that is inhibited by Nalpha-p-tosyl-L-lysine chloromethyl ketone and leupeptin. Inhibition of both of the nucleases or the protease impairs aerial mycelium development in S. antibioticus. The biochemical features of cellular DNA degradation during Streptomyces development show significant analogies with the late steps of apoptosis of eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号