首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hippocampal metabotropic glutamate 5 receptors (mGlu5Rs) regulate both physiological and pathological responses to glutamate. Because mGlu5R activation enhances NMDA-mediated effects, and given the role played by NMDA receptors in synaptic plasticity and excitotoxicity, modulating mGlu5R may influence both the physiological and the pathological effects elicited by NMDA receptor stimulation. We evaluated whether adenosine A2A receptors (A(2A)Rs) modulated mGlu5R-dependent effects in the hippocampus, as they do in the striatum. Co-application of the A(2A)R agonist CGS 21680 with the mGlu5R agonist (RS)-2-chloro-s-hydroxyphenylglycine(CHPG) synergistically reduced field excitatory postsynaptic potentials in the CA1 area of rat hippocampal slices. Endogenous tone at A(2A)Rs seemed to be required to enable mGlu5R-mediated effects, as the ability of CHPG to potentiate NMDA effects was antagonized by the selective A(2A)R antagonist ZM 241385 in rat hippocampal slices and cultured hippocampal neurons, and abolished in the hippocampus of A(2A)R knockout mice. Evidence for the interaction between A(2A)Rs and mGlu5Rs was further strengthened by demonstrating their co-localization in hippocampal synapses. This is the first evidence showing that hippocampal A(2A)Rs and mGlu5Rs are co-located and act synergistically, and that A(2A)Rs play a permissive role in mGlu5R receptor-mediated potentiation of NMDA effects in the hippocampus.  相似文献   

2.
In cerebellar slices, the lowering of oxygen availability, obtained by bubbling N(2) in the medium, reduced the incorporation of radioactive serine into phosphatidylserine (PtdSer). CPCCOEt, an antagonist of metabotropic glutamate receptors type 1 (mGluR1) counteracted the effect, whereas antagonists of NMDA or AMPA receptors were ineffective. In oxygenated slices, agonists of Group I mGluRs, which include mGluR1, inhibited PtdSer synthesis. This effect was also counteracted by CPCCOEt. These findings indicate that glutamate inhibits PtdSer synthesis by acting on mGluR1. This could be important in relation to the known release of glutamate in hypoxia-ischaemia conditions. In cerebellar Purkinje cells, mGluR1 are involved in the generation of mGluR-EPSP evoked by parallel fibre stimulation. The administration of l-serine to cerebellar slices reduced in a dose-dependent manner the mGluR-EPSP evoked by parallel fibre stimulation. The effect was mostly due to the increased synthesis of PtdSer. Thus inhibition of PtdSer synthesis, mediated by mGluR1, may participate in the generation of mGluR-EPSP.  相似文献   

3.
The metabotropic glutamate receptors 5 (mGlu5Rs) and the adenosine A2A receptors (A2ARs) have been reported to functionally interact in the striatum. The aim of the present work was to verify the hypothesis that the state of activation of A2A Rs could influence mGlu5R-mediated effects in the striatum. In electrophysiological experiments (extracellular recording in rat corticostriatal slices), the ability of the selective mGlu5R agonist CHPG to potentiate the reduction of the field potential amplitude induced by NMDA was prevented not only by the selective mGlu5R antagonist MPEP, but also by the selective A2AR antagonist ZM 241385. Analogously, the application of CHPG potentiated NMDA-induced toxicity (measured by LDH release) in cultured striatal neurons, an effect that was abolished by both MPEP and ZM 241385. Finally, the A2AR agonist CGS 21680 potentiated CHGP effects, an action that was reproduced and abolished, respectively, by forskolin (an activator of the cAMP/protein kinase A, PKA, pathway) and KT 5720 (a PKA inhibitor). The results indicate that A2ARs exert a permissive role on mGlu5R-induced effects in the striatum. Such an interaction may represent an additional target for the development of therapeutic strategies towards striatal disorders.  相似文献   

4.
A detailed pharmacological characterization of metabotropic glutamate receptors (mGluR) was performed in primary cultures of cerebellar granule cells at 6 days in vitro (DIV). The rank order of agonists induced polyphosphoinositide (PPI) hydrolysis (after correcting for the ionotropic component in the response) was as follows: in terms of efficiency, Glu>quisqualate (quis)=ibotenate (ibo)>(1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid (ACPD)>-methyl-amino-l-alanine (BMAA) and in terms of potency, quis>ACPD>Glu>ibo=BMAA. Ionotropic excitatory amino acid (EAA) receptor agonists, such as -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) were relatively inactive (in the presence of Mg2+). Quis and ACPD-induced PPI hydrolysis was unaffected by ionotropic Glu receptor antagonists, but was inhibited, in part by L-2-amino-3-phosphonopropionate (AP3). In contrast, Glu-or ibo- induced PPI hydrolysis was reduced, in part, by both AP3 and NMDA receptor antagonists. Characteristic interactions involving different transmitter receptors were noted. PPI hydrolysis evoked by quis and 1S,3R-ACPD was not additive. In contrast, PPI hydrolysis stimulated by quis/ACPD and carbamylcholine was additive (indicating different receptors/transduction pathways). In the presence of Mg2+, the metabotropic response to quis/AMPA and NMDA was synergistic (this being consistent with AMPA receptor-induced depolarization activating NMDA receptor). On the other hand, in Mg2+-free buffer the effects of quis and NMDA, at concentrations causing maximal PPI hydrolysis, were additive (indicating that PPI hydrolysis was effected by two different mechanisms). Thus, in cerebellar granule cells EAAs elicit PPI hydrolysis by acting at two distinct receptor types: (i) metabotropic Glu receptors (mGluR), with pharmacological characteristics suggesting the expression of a unique mGluR receptor that shows certain similarities to those observed for the mGluR1 subtype (Aramori and Nakanishi, 1992) and (ii) NMDA receptors. The physiological agonist, Glu, is able to stimulate both receptor classes.Abbreviations ACPD (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid - AMPA -amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid - AP3 L-2-amino-3-phosphono-propionate - AP5 D-2-amino-5-phosphonopentenoate - BMAA -methyl-amino-L-alanine - DIV days in vitro - DNOX 6,7-dinitroouinoxoline-2,3-dione - EAA excitatory amino acids - Glu glutamate - InsP inositol monophosphate - mGluR metabotropic glutamate receptors - MK-801 (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohept-5,10-imine hydrogen maleate - NMDA N-methyl-D-aspartate - PPI polyphosphoinositide - quis quisqualate  相似文献   

5.
Spinal cord injury (SCI) leads to an increase in extracellular excitatory amino acid (EAA) concentrations resulting in glutamate receptor-mediated excitotoxic events. The glutamate receptors include ionotropic (iGluRs) and metabotropic (mGluR) receptors. Of the three groups of mGluRs, group-I activation can initiate intracellular pathways that lead to further transmitter release. Groups II and III mGluRs function mainly as autoreceptors to regulate neurotransmitter release. In an effort to examine the role of mGluRs in the increase in EAAs following SCI, we administered AIDA, a potent group-I mGluR antagonist immediately after injury. To determine subtype specific roles of the group-I mGluRs, we evaluated EAA release following LY 367385 (mGluR1 antagonist) and MPEP (mGluR5 antagonist) administration. To evaluate group-II and -III mGluRs we administered APDC (group-II agonist) and L-AP4 (group-III agonist) immediately following injury; additionally, we initiated treatment with CPPG (group-II/-III antagonist) and LY 341495 (group-II antagonist) 5 min prior to injury. Subjects were adult male Sprague-Dawley rats (225-250 g), impact injured at T10 with an NYU impactor (12.5 mm drop). Agents were injected into the epicenter of injury, amino acids where collected by microdialysis fibers inserted 0.5 mm caudal from the edge of the impact region and quantified by HPLC. Treatment with AIDA significantly decreased extracellular EAA and GABA concentrations. MPEP reduced EAA concentrations without affecting GABA. Combining LY 367385 and MPEP resulted in a decrease in EAA and GABA concentrations greater than either agent alone. L-AP4 decreased EAA levels, while treatment with LY 341495 increased EAA levels. These results suggest that mGluRs play an important role in EAA toxicity following SCI.  相似文献   

6.
Activation of glutamate receptors is known to alter the biophysical state of the cytoskeleton of neurons in the developing brain. In this study, we examined the ability of G protein-coupled metabotropic glutamate receptors (mGluRs) to inhibit the formation of processes induced by the expression of the microtubule-associated protein MAP2c. The infection of insect MG-1 cells with a recombinant baculovirus (BV) encoding MAP2c induced the formation of fine filamentous processes. The binding of MAPs to tubulin promotes tubulin polymerization and the formation of microtubules. Co-infection with BVs for the phosphoinositide (PI)-linked mGluR1a or mGluR1b receptor subtypes inhibited the formation of processes induced by MAP2c, whereas co-infection with BVs encoding the mGluR4a or mGluR4b subtypes that couple to adenylyl cyclase did not inhibit the formation of processes. The biochemical pathways responsible for producing the inhibitory effect of mGluR1 were investigated. Inhibitors of protein kinase C, calcium/calmodulin-dependent kinase, and protein tyrosine kinases did not block the inhibitory effect of mGluR1a. The calcium chelator BAPTA and the calcium depletor thapsigargin also did not affect the ability of mGluR1a to inhibit process formation. In contrast, inhibitors of phospholipase C reversed the effect of mGluR1 on process formation, suggesting that one or more metabolites in the PI pathway were responsible for the inhibitory effect. These findings indicate that PIs generated by activation of mGluRs inhibit the binding of MAPs to tubulin and reduce tubulin polymerization and microtubule stability.  相似文献   

7.
Recent reports have proposed a novel function for the N-methyl-d-aspartate (NMDA) receptor (NMDAR), a well-known excitatory, ionotropic receptor. A series of observations employing pharmacological techniques has proposed that upon ligand binding, this ionotropic receptor can actually function via signaling cascades independent of traditional ionotropic action. Moreover, the “metabotropic” action of NMDARs is suggested to mediate a form of synaptic plasticity, namely long-term synaptic depression (LTD), which shares cellular mechanisms with the synaptic deficits observed in Alzheimer’s disease. Given that a growing body of clinical and preclinical evidence strongly recommends NMDAR antagonists for their therapeutic potentials and advantages in a variety of diseases, further investigation into their molecular and cellular mechanisms is required to better understand the “metabotropic” action of NMDARs.  相似文献   

8.
代谢型谷氨酸受体在突触可塑性中的作用   总被引:2,自引:0,他引:2  
陈鹏  李金莲 《生命科学》2001,13(3):107-109,102
突触可塑性是近几年神经科学研究的热点之一,因为它对于理解神经系统的学习、学习和记忆、多咱神经疾病等许多过程有着重要的意义。除了离子型谷氨酸受体外,代谢型谷氨酸受体也参与了一些脑区中不同形式的突触可塑性变化。本文就代谢型谷氨酸受体选择性激动剂和拮抗剂对长时程增强和长时程抑制的作用进行了综述,以助于人们进一步理解突触可塑性的细胞和分子机制。  相似文献   

9.
Excitatory synaptic transmission is inhibited by G protein coupled receptors, including the adenosine A1, GABAB, and metabotropic glutamate receptor 7. These receptors are present in nerve terminals where they reduce the release of glutamate through activating signaling pathways negatively coupled to Ca2+ channels and adenylyl cyclase. However, it is not clear whether these receptors operate in distinct subpopulations of nerve terminals or if they are co-expressed in the same nerve terminals, despite the functional consequences that such distributions may have on synaptic transmission. Applying Ca2+ imaging and immunocytochemistry, we show that these three G protein coupled receptors coexist in a subpopulation of cerebrocortical nerve terminals. The three receptors share an intracellular signaling pathway through which their inhibitory responses are integrated and coactivation of these receptors produced an integrated response. Indeed, this response was highly variable, from a synergistic response at subthreshold agonist concentrations to an occluded response at high agonist concentrations. The presence of multiple receptors in a nerve terminal could be responsible for the physiological effects of neurotransmitter spillover from neighboring synapses or alternatively, the co-release of transmitters by the same nerve terminal.  相似文献   

10.
The orphan GluD2 receptor belongs to the ionotropic glutamate receptor family but does not bind glutamate. Ligand-gated GluD2 currents have never been evidenced, and whether GluD2 operates as an ion channel has been a long-standing question. Here, we show that GluD2 gating is triggered by type 1 metabotropic glutamate receptors, both in a heterologous expression system and in Purkinje cells. Thus, GluD2 is not only an adhesion molecule at synapses but also works as a channel. This gating mechanism reveals new properties of glutamate receptors that emerge from their interaction and opens unexpected perspectives regarding synaptic transmission and plasticity.  相似文献   

11.
Metabotropic glutamate receptors (mGluR) modulate neuronal function. Here, we tested the effect on metabolism of a range of Group I and II mGluR ligands in Guinea pig brain cortical tissue slices, applying 13C NMR spectroscopy and metabolomic analysis using multivariate statistics. The effects of Group I agonists (S)-3,5-dihydroxyphenylglycine (DHPG) and (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) depended upon concentration and were mostly stimulatory, increasing both net metabolic flux through the Krebs cycle and glutamate/glutamine cycle activity. Only the higher (50 microm) concentrations of CHPG had the opposite effect. The Group I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), consistent with its neuroprotective role, caused significant decreases in metabolism. With principal components analysis of the metabolic profiles generated by these ligands, the effects could be separated by two principal components. Agonists at Group II mGluR [(2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) and 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC)] generally stimulated metabolism, including glutamate/glutamine cycling, although this varied with concentration. The antagonist (2S)-alpha-ethylglutamic acid (EGLU) stimulated astrocyte metabolism with minimal impact on glutamate/glutamine cycling. (RS)-1-Aminophosphoindan-1-carboxylic acid (APICA) decreased metabolism at 5 microm but had a stimulatory effect at 50 microm. All ligand effects were separated from control and from each other using two principal components. The ramifications of these findings are discussed.  相似文献   

12.
Previous in vitro studies have shown that group III metabotropic glutamate receptors (mGluRs) regulate synaptic glutamate release. The present study used microdialysis to characterize this regulation in vivo in rat nucleus accumbens. Reverse dialysis of the group III mGluR agonist l-(+)-2-amino-4-phosphonobutyric acid (L-AP4) decreased, whereas the antagonist (R,S)-alpha-methylserine-O-phosphate (MSOP) increased the extracellular level of glutamate. The decrease by L-AP4 or the increase by MSOP was antagonized by co-administration of MSOP or L-AP4, respectively. Activation of mGluR4a by (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid or mGluR6 by 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid had no effect on extracellular glutamate. (R,S)-4-Phosphonophenylglycine (PPG), another group III agonist with high affinity for mGluR4/6/8, reduced extracellular glutamate only at high concentrations capable of binding to mGluR7. The increase in extracellular glutamate by MSOP was tetrodotoxin-independent, and resistant to both the L-type and N-type Ca2+ channel blockers. L-AP4 failed to block 30 mm K+-induced vesicular glutamate release. Blockade of glutamate uptake by d,l-threo-beta-benzyloxyaspartate caused a Ca2+-independent elevation in extracellular glutamate that was reversed by L-AP4. Finally, (S)-4-carboxyphenylglycine, an inhibitor of cystine-glutamate antiporters, attenuated the L-AP4-induced reduction in extracellular glutamate. Together, these data indicate that group III mGluRs regulate in vivo extracellular glutamate in the nucleus accumbens by inhibiting non-vesicular glutamate release.  相似文献   

13.
The effects of glutamate agonists and their selective antagonists on the Ca2+-dependent and independent releases of [3H]GABA from rat coronal hippocampal slices were studied in a superfusion system. The Ca2+-dependent release evoked by glutamate, kainate and N-methyl-D-aspartate (NMDA) gradually declined with time despite the continuous presence of the agonists. Quisqualate (QA) caused a sustained release which exhibited no tendency to decline within the 20-min period of stimulation. This release was enhanced in Ca2+-free medium. The release evoked by QA in Ca2+-containing medium was significantly inhibited by (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohept-5,10-imine hydrogen maleate (MK-801) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), showing that QA activates NMDA receptors directly or indirectly through (RS)--amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. The inhibition of MK-801 was slightly diminished and that of CNQX totally abolished in Ca2+-free medium. Verapamil inhibited the QA-activated release in both Ca2+-containing and Ca2+-free media. The effect of QA but not that of AMPA was blocked in Ca2+-free medium by L(+)-2-amino-3-phosphonopropionate (L-AP3), a selective antagonist of the metabotropic glutamate receptor. It is suggested that the sustained release of GABA is also mediated partly by activation of metabotropic receptors and mobilization of Ca2+ from intracellular stores.  相似文献   

14.
Glutamate receptors mediate the majority of excitatory responses in the central nervous system (CNS). Neurons express multiple subtypes and subunits of glutamate receptors, which are differentially distributed at pre- and postsynaptic sites. This allows the cell to respond differentially depending on the subunit composition of receptors at the postsynaptic membrane. The process by which receptors are targeted selectively to the appropriate synapse is poorly understood. Evidence exists that targeting of glutamate receptors to the different neuronal compartments is regulated at multiple levels involving a general targeting step; a local step where receptor-containing organelles are moved to the synapse; and a step where the receptors are stabilized at the synapse, which may involve interaction with an anchoring protein.  相似文献   

15.
We investigated whether the activation of astroglial group II and III metabotropic glutamate receptors (mGluRs) could exert neuroprotective effects and whether the neuroprotection was related to glutamate uptake. Our results showed that the activation of astroglial group II or III mGluRs exerted neuroprotection against 1-methyl-4-phenylpyridinium (MPP+) astroglial conditioned medium-induced neurotoxicity in midbrain neuron cultures. Furthermore, MPP+ decreased glutamate uptake of primary astrocytes and C6 glioma cells, which was recovered by activating group II or III mGluRs. Specific group II or III mGluRs antagonists completely abolished the neuroprotective effects and the enhancement of glutamate uptake of their respective agonists. Our results showed that the primary cultured rat astrocytes and C6 glioma cells expressed receptor proteins for group II mGluR2/3, group III mGluR4, mGluR6 and mGluR7. C6 glioma cells expressed mRNA for group II mGluR3, group III mGluR4, mGluR6, mGluR7 and mGluR8. In conclusion, we confirmed that the activation of astroglial mGluRs exerted neuroprotection, and demonstrated that the mechanism underlying this protective role was at least partially related to the enhancement of glutamate uptake.  相似文献   

16.
Results of the present work demonstrate the pronounced modulating effects mediated by group-II and-III metabotropic glutamate receptors (mGluRs) on miniature postsynaptic potentials (mPSPs) of frog spinal motoneurons. The character of the effects of the group-II and-III mGluRs ligands, i.e., changes in the mPSPs frequency and the absence of significant changes in their amplitude, indicates the presynaptic mechanism of the modulation due to a change of the process of transmitter release. The application of ethylglutamate (EGLU) and methylaminophosphobutyrate (MAP4), which are selective antagonists of group-II and-III mGluRs, increased frequency of mPSPs by an average of 52.8 ± 30.2% (in four out of six motoneurons) and by 54.7 ± 23.7% (in all 7 motoneurons), respectively. The application of group-III mGluRs agonist L-aminophosphobutyrate (L-AP4) decreased the mPSP frequency by 21.8 ± 5.2% in three out of five motoneurons. The efficiency of the use of an antagonist and the comparatively low efficiency of the agonist suggest that presynaptic mGluRs are tonically activated during motoneuronal synapses. The absence of a group-II mGluR antagonist effect in some motoneurons appears to be explained by the specific localization of group-II mGluRs in the preterminal area distant from the transmitter release site. The modulation of pharmacologically isolated inhibitory miniature activity and its glycine and GABAergic fractions due to the group-III mGluRs-mediated heteroreceptor was investigated. The MAP4 application was shown to increase the glycine-mediated mIPSPs frequency to a greater degree than the GABA-mediated mIPSPs frequency, as their modulations were equal to an average of 97.6 ± 20.7% (n = 7) and 54.6 ± 20.8% (n = 5), respectively. This difference might possibly be due to the segregation of the postsynaptic glycine and GABAA receptors. The study of the convergence of the modulating effects of the presynaptic mGluRs and metabotropic GABAB receptors has shown that, under the condition of the blockage of the tonically active GABAB receptor by phaclofen, the application of the group-III mGluR agonist L-AP4 produces the typical effect, which was completely eliminated by subsequent application of the group-III mGluRs antagonist MAP4. This result agrees with the point of view regarding the independence of effects mediated by GABAB receptors and group-III mGluRse.  相似文献   

17.
Activation of metabotropic glutamate receptors by injecting (S)3,5-dihydroxyphenylglycine (DHPG) in nucleus accumbens (NAcc) increases motor activity by different mechanisms in control rats and in rats with chronic liver failure due to portacaval shunt. In control rats DHPG increases extracellular dopamine in NAcc and induces locomotion by activating the 'normal' circuit: NAcc-->ventral pallidum-->medial-dorsal thalamus-->prefrontal cortex, which is not activated in portacaval shunt rats. In these rats, DHPG activates an 'alternative' circuit: NAcc-->substantia nigra pars reticulata-->ventro-medial thalamus-->prefrontal cortex, which is not activated in control rats. The reasons by which liver failure leads to activation of this 'alternative' circuit remain unclear. The aim of this work was to assess whether hyperammonaemia could be responsible for the alterations found in chronic liver failure. We injected DHPG in NAcc of control or hyperammonaemic rats and analysed, by in vivo brain microdialysis, the neurochemical responses of the 'normal' and 'alternative' circuits. In hyperammonaemic rats DHPG injection in NAcc activates both the 'normal' and 'alternative' circuits. In hyperammonaemia, activation of the 'alternative' circuit and increased motor response following metabotropic glutamate receptors activation in NAcc seem due to an increase in extracellular glutamate which activates AMPA receptors.  相似文献   

18.
Metabotropic receptors may couple to different G proteins in different cells or perhaps even in different regions of the same cell. To date, direct studies of group II and group III metabotropic glutamate receptors' (mGluRs) relationships to second messenger cascades have reported negative coupling of these receptors to cyclic AMP (cAMP) levels in neurons, astrocytes and transfected cells. In the present study, we found that the peptide neurotransmitter N-acetylaspartylglutamate (NAAG), an mGluR3-selective agonist, decreased sodium nitroprusside (SNP)-stimulated cyclic GMP (cGMP) levels in cerebellar granule cells and cerebellar astrocytes. The mGluR3 and group II agonists FN6 and LY354740 had similar effects on cGMP levels. The mGluR3 and group II antagonists beta-NAAG and LY341495 blocked these actions. Treatment with pertussis toxin inhibited the effects of NAAG on SNP-stimulated cGMP levels in rat cerebellar astrocytes but not in cerebellar neurons. These data support the conclusion that mGluR3 is also coupled to cGMP levels and that this mGluR3-induced reduction of cGMP levels is mediated by different G proteins in cerebellar astrocytes and neurons. We previously reported that this receptor is coupled to a cAMP cascade via a pertussis toxin-sensitive G protein in cerebellar neurons, astrocytes and transfected cells. Taken together with the present data, we propose that mGluR3 is coupled to two different G proteins in granule cell neurons. These data greatly expand knowledge of the range of second messenger cascades induced by mGluR3, and have implications for clinical conditions affected by NAAG and other group II mGluR agonists.  相似文献   

19.
The effects of several metabotropic receptor (mGluR) ligands on baseline hippocampal glutamate and GABA overflow in conscious rats and the modulation of limbic seizure activity by these ligands were investigated. Intrahippocampal mGluR group I agonist perfusion via a microdialysis probe [1 mm (R,S)-3,5-dihydroxyphenylglycine] induced seizures and concomitant augmentations in amino acid dialysate levels. The mGlu1a receptor antagonist LY367385 (1 mm) decreased baseline glutamate but not GABA concentrations, suggesting that mGlu1a receptors, which regulate hippocampal glutamate levels, are tonically activated by endogenous glutamate. This decrease in glutamate may contribute to the reported LY367385-mediated anticonvulsant effect. The mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (50 mg/kg) also clearly abolished pilocarpine-induced seizures. Agonist-mediated actions at mGlu2/3 receptors by LY379268 (100 microm, 10 mg/kg intraperitoneally) decreased basal hippocampal GABA but not glutamate levels. This may partly explain the increased excitation following systemic LY379268 administration and the lack of complete anticonvulsant protection within our epilepsy model with the mGlu2/3 receptor agonist. Group II selective mGluR receptor blockade with LY341495 (1-10 microm) did not alter the rats' behaviour or hippocampal amino acid levels. These data provide a neurochemical basis for the full anticonvulsant effects of mGlu1a and mGlu5 antagonists and the partial effects observed with mGlu2/3 agonists in vivo.  相似文献   

20.
Prenatal stress greatly influences the ability of an individual to manage stressful events in adulthood. Such vulnerability may result from abnormalities in the development and integration of forebrain dopaminergic and glutamatergic projections during the prenatal period. In this study, we assessed the effects of prenatal stress on the expression of selective dopamine and glutamate receptor subtypes in the adult offsprings of rats subjected to repeated restraint stress during the last week of pregnancy. Dopamine D2-like receptors increased in dorsal frontal cortex (DFC), medial prefrontal cortex (MPC), hippocampal CA1 region and core region of nucleus accumbens (NAc) of prenatally stressed rats compared to control subjects. Glutamate NMDA receptors increased in MPC, DFC, hippocampal CA1, medial caudate-putamen, as well as in shell and core regions of NAc. Group III metabotropic glutamate receptors increased in MPC and DFC of prenatally stressed rats, but remained unchanged in all other regions examined. These results indicate that stress suffered during the gestational period has long lasting effects that extend into the adulthood of prenatally stressed offsprings. Changes in dopamine and glutamate receptor subtype levels in different forebrain regions of adult rats suggest that the development and formation of the corticostriatal and corticolimbic pathways may be permanently altered as a result of stress suffered prenatally. Maldevelopment of these pathways may provide a neurobiological substrate for the development of schizophrenia and other idiopathic psychotic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号