首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA fragments encoding the Streptococcus downei dextranase were amplified by PCR and inverse PCR based on a comparison of the dextranase gene (dex) sequences from S. sobrinus, S. mutans, and S. salivarius, and the complete nucleotide sequence of the S. downei dex was determined. An open reading frame (ORF) of dex was 3,891 bp long. It encoded a dextranase protein (Dex) consisting of 1,297 amino acids with a molecular mass of 139,743 Da and an isoelectric point of 4.49. The deduced amino acid sequence of S. downei Dex had homology to those of S. sobrinus, S. mutans and S. salivanus Dex in the conserved region (made of about 540 amino acid residues). DNA hybridization analysis showed that a dex DNA probe of S. downei hybridized to the chromosomal DNA of S. sobrinus as well as that of S. downei, but did not to other species of mutans streptococci. The C terminus of the S. downei Dex had a membrane-anchor region which has been reported as a common structure of C termini of both the S. mutans and S. sobrinus Dex. The recombinant plasmid which harbored the dex ORF of S. downei produced a recombinant Dex enzyme in Escherichia coli cells. The analysis of the recombinant enzyme on SDS-PAGE containing blue dextran showed multiple active forms as well as dextranases of S. mutans, S. sobrinus and S. salivarius.  相似文献   

2.
The complete nucleotide sequence of the dextranase gene of Streptococcus rattus ATCC19645 was determined. An open reading frame of the dextranase gene was 2,760 bp long and encoded a dextranase protein consisting of 920 amino acids with a molecular weight of 100,163 Da and an isoelectric point of 4.67. The S. rattus dextranase purified from recombinant Escherichia coli cells showed dextran-hydrolyzing activity with optimal pH (5.0) and temperature (40 C) similar to those of dextranases from Streptococcus mutans and Streptococcus sobrinus. The deduced amino acid sequence of the S. rattus dextranase revealed that the dextranase molecule consists of two variable regions and a conserved region. The variable regions contained an N-terminal signal peptide and a C-terminal cell wall sorting signal; the conserved region contained two functional domains, catalytic and dextran-binding sites. This structural feature of the S. rattus dextranase is quite similar to that of other cariogenic species such as S. mutans, S. sobrinus, and Streptococcus downei.  相似文献   

3.
Nucleotide sequences of water-insoluble glucan-producing glucosyltransferase (gtf) genes of new mutans streptococci isolated from pig oral cavity, Streptococcus orisuis JCM14035, and of Streptococcus criceti HS-6 were determined. The gtf gene of S. orisuis JCM14035 consisted of a 4,401 bp ORF encoding for a 1,466 amino acids, and was revealed to belong to the gtfI group. The percent homology of amino acid sequence of the GTF-I from S. orisuis and S. criceti are 95.0%, however, this score ranges from 77.0% to 78.0% when compared to Streptococcus sobrinus 6715. The deduced N-terminal amino acid sequence was considered responsible for the secretion of GTF-I in S. orisuis JCM14035 and S. criceti HS-6 with high similarity to known GTF proteins from other streptococci. In addition, two other conserved regions, i.e., N-terminal putative catalytic-site and C-terminal glucan binding domain, were also found in GTF-Is of S. orisuis JCM14035 and S. criceti HS-6. Phylogenetic analysis suggested that S. orisuis JCM14035 and S. criceti HS-6, closely related to each other, resemble S. sobrinus and S. downei based on the amino acid sequences of the GTFs.  相似文献   

4.
S Y Wanda  R Curtiss  rd 《Journal of bacteriology》1994,176(13):3839-3850
The plasmid (pYA902) with the dextranase (dex) gene of Streptococcus sobrinus UAB66 (serotype g) produces a C-terminal truncated dextranase enzyme (Dex) with a multicomplex mass form which ranges from 80 to 130 kDa. The Escherichia coli-produced enzyme was purified and characterized, and antibodies were raised in rabbits. Purified dextranase has a native-form molecular mass of 160 to 260 kDa and specific activity of 4,000 U/mg of protein. Potential immunological cross-reactivity between dextranase and the SpaA protein specified by various recombinant clones was studied by using various antisera and Western blot (immunoblot) analysis. No cross-reactivity was observed. Optimal pH (5.3) and temperature (39 degrees C) and the isoelectric points (3.56, 3.6, and 3.7) were determined and found to be similar to those for dextranase purified from S. sobrinus. The dex DNA restriction map was determined, and several subclones were obtained. The nucleotide sequence of the dex gene was determined by using subclones pYA993 and pYA3009 and UAB66 chromosomal DNA. The open reading frame for dex was 4,011 bp, ending with a stop codon TAA. A ribosome-binding site and putative promoter preceding the start codon were identified. The deduced amino acid sequence of Dex revealed the presence of a signal peptide of 30 amino acids. The cleavage site for the signal sequence was determined by N-terminal amino acid sequence analysis for Dex produced in E. coli chi 2831(pYA902). The C terminus consists of a serine- and threonine-rich region followed by the peptide LPKTGD, 3 charged amino acids, 19 amino acids with a strongly hydrophobic character, and a charged pentapeptide tail, which are proposed to correspond to the cell wall-spanning region, the LPXTGX consensus sequence, and the membrane-anchoring domains of surface-associated proteins of gram-positive cocci.  相似文献   

5.
A pair of polymerase chain reaction (PCR) primers was designed on the basis of the nucleotide sequence homology of dextranase genes (dex) of Streptococcus mutans, S. sobrinus and S. downei. The primer pair amplified a 530-bp DNA fragment on the dex genes of mutans streptococcal species: S. mutans, S. sobrinus, S. downei, S. rattus and S. cricetus. HaeIII digestion of the 530-bp fragments generated species-specific subfragments, which were easily distinguishable from each other by agarose gel electrophoresis. These results suggest that the PCR-amplification of the dex gene followed by the HaeIII digestion is useful for rapid identification of the five species of mutans streptococci.  相似文献   

6.
In this study, we isolated four bacterial strains grown on mitis-salivarius sucrose bacitracin agar. The strains had similar biochemical characteristics to biotypes I or II of mutans streptococci. The four isolates were identified as Streptococcus downei by 16S rDNA and dextranase gene (dex) sequencing as well as polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) targeting dex. To our knowledge, this is the first report of the isolation and identification of S. downei from dental plaque in humans. The results suggest that S. downei can inhabit the human oral cavity.  相似文献   

7.
8.
Gite S  Li Y  Ramesh V  RajBhandary UL 《Biochemistry》2000,39(9):2218-2226
The formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF) is important for the initiation of protein synthesis in eubacteria. We are studying the molecular mechanisms of recognition of the initiator tRNA by Escherichia coli MTF. MTF from eubacteria contains an approximately 100-amino acid C-terminal extension that is not found in the E. coli glycinamide ribonucleotide formyltransferase, which, like MTF, use N(10)-formyltetrahydrofolate as a formyl group donor. This C-terminal extension, which forms a distinct structural domain, is attached to the N-terminal domain through a linker region. Here, we describe the effect of (i) substitution mutations on some nineteen basic, aromatic and other conserved amino acids in the linker region and in the C-terminal domain of MTF and (ii) deletion mutations from the C-terminus on enzyme activity. We show that the positive charge on two of the lysine residues in the linker region leading to the C-terminal domain are important for enzyme activity. Mutation of some of the basic amino acids in the C-terminal domain to alanine has mostly small effects on the kinetic parameters, whereas mutation to glutamic acid has large effects. However, the deletion of 18, 20, or 80 amino acids from the C-terminus has very large effects on enzyme activity. Overall, our results support the notion that the basic amino acid residues in the C-terminal domain provide a positively charged channel that is used for the nonspecific binding of tRNA, whereas some of the amino acids in the linker region play an important role in activity of MTF.  相似文献   

9.
10.
Ribosomal protein L2 is a primary 23S rRNA binding protein in the large ribosomal subunit. We examined the contribution of the N- and C-terminal regions of Bacillus stearothermophilus L2 (BstL2) to the 23S rRNA binding activity. The mutant desN, in which the N-terminal 59 residues of BstL2 were deleted, bound to the 23S rRNA fragment to the same extent as wild type BstL2, but the mutation desC, in which the C-terminal 74 amino acid residues were deleted, abolished the binding activity. These observations indicated that the C-terminal region is involved in 23S rRNA binding. Subsequent deletion analysis of the C-terminal region found that the C-terminal 70 amino acids are required for efficient 23S rRNA binding by BstL2. Furthermore, the surface plasmon resonance analysis indicated that successive truncations of the C-terminal residues increased the dissociation rate constants, while they had little influence on association rate constants. The result indicated that reduced affinities of the C-terminal deletion mutants were due only to higher dissociation rate constants, suggesting that the C-terminal region primarily functions by stabilizing the protein L2-23S rRNA complex.  相似文献   

11.
J W Sun  S Y Wanda  A Camilli    R Curtiss  rd 《Journal of bacteriology》1994,176(23):7213-7222
Some dextranase-deficient (Dex-) mutants of Streptococcus sobrinus UAB66 (serotype g) synthesize a substance which inhibits dextranase activity (S.-Y. Wanda, A. Camilli, H. M. Murchison, and R. Curtiss III, J. Bacteriol. 176:7206-7212, 1994). This substance produced by the Dex- mutant UAB108 was designated dextranase inhibitor (Dei) and identified as a protein. The Dei gene (dei) from UAB108 has been cloned into pACYC184 to yield pYA2651, which was then used to generate several subclones (pYA2653 to pYA2657). The DNA sequence of dei was determined by using Tn5seq1 transposon mutagenesis of pYA2653. The open reading frame of dei is 990 bp long. It encodes a signal peptide of 38 amino acids and a mature Dei protein of 292 amino acids with a molecular weight of 31,372. The deduced amino acid sequence of Dei shows various degrees of similarity with glucosyltransferases and glucan-binding protein and contains A and C repeating units probably involved in glucan binding. Southern hybridization results showed that the dei probe from UAB108 hybridized to the same-size fragment in S. sobrinus (serotype d and g) DNA, to a different-size fragment in S. downei (serotype h) and S. cricetus (serotype a), and not at all to DNAs from other mutans group of streptococci.  相似文献   

12.
Antirestriction proteins of the ArdB/KlcA family are specific inhibitors of restriction (endonuclease) activity of type-I restriction/modification enzymes. The effect of conserved amino acid residues on the antirestriction activity of the ArdB protein encoded by the transmissible R64 (IncI1) plasmid has been investigated. An analysis of the amino acid sequences of ArdB homologues demonstrated the presence of four groups of conserved residues ((1) R16, E32, and W51; (2) Y46 and G48; (3) S81, D83 and E132, and (4) N77, L(I)140, and D141) on the surface of the protein globule. Amino acid residues of the fourth group showed a unique localization pattern with the terminal residue protruding beyond the globule surface. The replacement of two conserved amino acids (D141 and N77) located in the close vicinity of each other on the globule surface showed that the C-terminal D141 is essential for the antirestriction activity of ArdB. The deletion of this residue, as well as replacement by a hydrophobic threonine residue (D141T), completely abolished the antirestriction activity of ArdB. The synonymous replacement of D141 by a glutamic acid residue (D141E) caused an approximately 30-fold decrease of the antirestriction activity of ArdB, and the point mutation N77A caused an approximately 20-fold decrease in activity. The residues D141 and N77 located on the surface of the protein globule are presumably essential for the formation of a contact between ArdB and a currently unknown factor that modulates the activity of type-I restriction/modification enzymes.  相似文献   

13.
AIMS: To establish a rapid method to differentiate Streptococcus downei and S. sobrinus by multiplex PCR. METHODS AND RESULTS: A PCR primer pair specific to S. downei was designed on the basis of the nucleotide sequence of the dextranase gene of S. downei NCTC 11391T. The primer pair specifically detected S. downei, but none of the other mutans streptococci (16 strains of six species). The PCR procedure was capable of detecting 1 pg of genomic DNA purified from S. downei NCTC 11391 and as few as 14 CFU of S. downei cells. The mixture of primer pairs specific to each S. downei (this study) and S. sobrinus (Igarashi et al. 2000) detected only the strains of these two species among all the mutans streptococcal strains, and concomitantly differentiated the two species by species-specific amplicons of different lengths. CONCLUSIONS: The present PCR method is highly specific to S. downei and is useful for detection and identification of S. downei. SIGNIFICANCE AND IMPACT OF THE STUDY: Multiplex PCR using dextranase gene primers is a useful method for simultaneous detection and differentiation of S. downei and S. sobrinus.  相似文献   

14.
Summary
We have determined the nucleotide sequence changes caused by three missense mutations leading to the production of inactive colicin E3 proteins. The ceaC1 mutation, affecting the transiocation of colicin E3 through bacterial membranes, is caused by a serine to phenylalanine change at position 37 within the glycine-rich region at the N-terminal part of colicin E3. This confirms previous results suggesting a role for this domain in colicin uptake by sensitive cells. The ceaC2 and ceaC3 mutations, abolishing colicin E3 RNase activity, affect the C-terminal enzymatic domain of the molecule, in the ceaC2 mutant, serine at position 529 was converted to leucine. The ceaC3 mutation replaced a glycine residue at position 524 with an aspartic acid residue. The two mutations ceaC2 and ceaC3 yieid information on the amino acid residues involved in the RNase activity of colicin E3.  相似文献   

15.
Ribosomal protein L2 is a primary 23S rRNA binding protein in the large ribosomal subunit. We examined the contribution of the N- and C-terminal regions of Bacillus stearothermophilus L2 (BstL2) to the 23S rRNA binding activity. The mutant desN, in which the N-terminal 59 residues of BstL2 were deleted, bound to the 23S rRNA fragment to the same extent as wild type BstL2, but the mutation desC, in which the C-terminal 74 amino acid residues were deleted, abolished the binding activity. These observations indicated that the C-terminal region is involved in 23S rRNA binding. Subsequent deletion analysis of the C-terminal region found that the C-terminal 70 amino acids are required for efficient 23S rRNA binding by BstL2. Furthermore, the surface plasmon resonance analysis indicated that successive truncations of the C-terminal residues increased the dissociation rate constants, while they had little influence on association rate constants. The result indicated that reduced affinities of the C-terminal deletion mutants were due only to higher dissociation rate constants, suggesting that the C-terminal region primarily functions by stabilizing the protein L2-23S rRNA complex.  相似文献   

16.
Wyman AJ  Popelkova H  Yocum CF 《Biochemistry》2008,47(24):6490-6498
The extrinsic photosystem II PsbO subunit (manganese-stabilizing protein) contains near-UV CD signals from its complement of aromatic amino acid residues (one Trp, eight Tyr, and 13 Phe residues). Acidification, N-bromosuccinimide modification of Trp, reduction or elimination of a disulfide bond, or deletion of C-terminal amino acids abolishes these signals. Site-directed mutations that substitute Phe for Trp241 and Tyr242, near the C-terminus of PsbO, were used to examine the contribution of these residues to the activity and spectral properties of the protein. Although this substitution is, in theory, conservative, neither mutant binds efficiently to PSII, even though these proteins appear to retain wild-type solution structures. Removal of six residues from the N-terminus of the W241F mutant restores activity to near-wild-type levels. The near-UV CD spectra of the mutants are modified; well-defined Tyr and Trp peaks are lost. Characterizations of the fluorescence spectra of the full-length WF and YF mutants indicate that Y242 contributes significantly to PsbO's Tyr fluorescence emission and that an excited-state tyrosinate could be present in PsbO. Deletion of W241 shows that this residue is a major contributor to PsbO's fluorescence emission. Loss of function is consistent with the proposal that a native C-terminal domain is required for PsbO binding and activity, and restoration of activity by deletion of N-terminal amino acids may provide some insights into the evolution of this important photosynthetic protein.  相似文献   

17.
A bacterial strain, which assimilated dextran and water-insoluble glucan produced by Streptococcus mutans, was isolated from soil. The bacterium produced and secreted potent dextranase activity, which was identified as Arthrobacter sp. and named CB-8. The dextranase was purified and some enzymatic properties were characterized. The enzyme efficiently decomposed the water-insoluble glucan as well as dextran. A gene library from the bacteria was constructed with Escherichia coli, using plasmid pUC19, and clones producing dextranase activity were selected. Based on the result of nucleotide sequencing analysis, it was deduced that the dextranase was synthesized in CB-8 cells as a polypeptide precursor consisting of 640 amino acid residues, including 49 N-terminal amino acid residues which could be regarded as a signal peptide. In the E. coli transformant, the dextranase activity was detected mostly in the periplasmic space. The gene for the dextranase was introduced into Streptococcus sanguis, using an E. coli-S. sanguis shuttle vector that contained the promoter sequence of a gene for glucosyltransferase derived from a strain of S. mutans. The active dextranase was also expressed and accumulated in S. sanguis cells.  相似文献   

18.
A library of random mutations in Xenopus ribosomal protein L5 was generated by error-prone PCR and used to delineate the binding domain for 5S rRNA. All but one of the amino acid substitutions that affected binding affinity are clustered in the central region of the protein. Several of the mutations are conservative substitutions of non-polar amino acid residues that are unlikely to form energetically significant contacts to the RNA. Thermal denaturation, monitored by circular dichroism (CD), indicates that L5 is not fully structured and association with 5S rRNA increases the t(m) of the protein by 16 degrees C. L5 induces changes in the CD spectrum of 5S rRNA, establishing that the complex forms by a mutual induced fit mechanism. Deuterium exchange reveals that a considerable amount of L5 is unstructured in the absence of 5S rRNA. The fluorescence emission of W266 provides evidence for structural changes in the C-terminal region of L5 upon binding to 5S rRNA; whereas, protection experiments demonstrate that the N terminus remains highly sensitive to protease digestion in the complex. Analysis of the amino acid sequence of L5 by the program PONDR predicts that the N and C-terminal regions of L5 are intrinsically disordered, but that the central region, which contains three essential tyrosine residues and other residues important for binding to 5S rRNA, is likely to be structured. Initial interaction of the protein with 5S rRNA likely occurs through this region, followed by induced folding of the C-terminal region. The persistent disorder in the N-terminal domain is possibly exploited for interactions between the L5-5S rRNA complex and other proteins.  相似文献   

19.
AIMS: To examine the dextran-binding domain of the dextranase (Dex) of Streptococcus mutans. METHODS AND RESULTS: Deletion mutants of the Dex gene of Strep. mutans were prepared by polymerase chain reaction and expressed in Escherichia coli cells. Binding of the truncated Dexs to dextran was measured with a Sephadex G-150 gel. Although the Dexs which lacked the N-terminal variable region lost enzyme activity, they still retained dextran-binding ability. In addition, further deletion into the conserved region from the N-terminal did not influence the dextran-binding ability. However, the Dex which carried a deletion in the C-terminus still possessed both enzyme activity and dextran-binding ability. Further deletion into the conserved region from the C-terminal resulted in complete disappearance of both enzyme and dextran-binding activities. CONCLUSIONS: Deletion analysis of the Dex gene of Strep. mutans showed that the C-terminal side (about 120 amino acid residues) of the conserved region of the Dex was essential for dextran-binding ability. SIGNIFICANCE AND IMPACT OF THE STUDY: The dextran-binding domain was present in a different area from the catalytic site in the conserved region of the Dex molecule. The amino acid sequence of the dextran-binding domain of the Dex differed from those of glucan-binding regions of other glucan-binding proteins reported.  相似文献   

20.
The P1 plasmid addiction operon (a classic toxin-antitoxin system) encodes Phd, an unstable 73-amino-acid repressor-antitoxin protein, and Doc, a stable toxin. It was previously shown by deletion analysis that the N terminus of Phd was required for repressor activity and that the C terminus was required for antitoxin activity. Since only a quarter of the protein or less was required for both activities, it was hypothesized that Phd might have a modular organization. To further test the modular hypothesis, we constructed and characterized a set of 30 point mutations in the third and fourth quarters of Phd. Four mutations (PhdA36H, V37A, I38A, and F44A) had major defects in repressor activity. Five mutations (PhdD53A, D53R, E55A, F56A, and F60A) had major defects in antitoxin activity. As predicted by the modular hypothesis, point mutations affecting each activity belonged to disjoint, rather than overlapping, sets and were separated rather than interspersed within the linear sequence. A final deletion experiment demonstrated that the C-terminal 24 amino acid residues of Phd (preceded by a methionine) retained full antitoxin activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号