首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. The early detection of invasive non‐native species (INNS) is important for informing management actions. Established monitoring methods require the collection or observation of specimens, which is unlikely at the beginning of an invasion when densities are likely to be low. Environmental DNA (eDNA) analysis is a highly promising technique for the detection of INNS—particularly during the early stages of an invasion.
  2. Here, we compared the use of traditional kick‐net sampling with two eDNA approaches (targeted detection using both conventional and quantitative PCR and passive detection via metabarcoding with conserved primers) for detection of quagga mussel, Dreissena rostriformis bugensis, a high priority INNS, along a density gradient on the River Wraysbury, UK.
  3. All three molecular tools outperformed traditional sampling in terms of detection. Conventional PCR and qPCR both had 100% detection rate in all samples and outperformed metabarcoding when the target species was at low densities. Additionally, quagga mussel DNA copy number (qPCR) and relative read count (metabarcoding) were significantly influenced by both mussel density and distance from source population, with distance being the most significant predictor.
  4. Synthesis and application. All three molecular approaches were more sensitive than traditional kick‐net sampling for the detection of the quagga mussel in flowing water, and both qPCR and metabarcoding enabled estimates of relative abundance. Targeted approaches were more sensitive than metabarcoding, but metabarcoding has the advantage of providing information on the wider community and consequently the impacts of INNS.
  相似文献   

2.
  1. Freshwater conservation is vital to the maintenance of global biodiversity. Ponds are a critical, yet often under‐recognized, part of this, contributing to overall ecosystem functioning and diversity. They provide habitats for a range of aquatic, terrestrial, and amphibious life, often including rare and declining species.
  2. Effective, rapid, and accessible survey methods are needed to enable evidence‐based conservation action, but freshwater taxa are often viewed as “difficult”—and few specialist surveyors are available. Datasets on ponds are therefore limited in their spatiotemporal coverage.
  3. With the advent of new recording technologies, acoustic survey methods are becoming increasingly available to researchers, citizen scientists, and conservation practitioners. They can be an effective and noninvasive approach for gathering data on target species, assemblages, and environmental variables. However, freshwater applications are lagging behind those in terrestrial and marine spheres, and as an emergent method, research studies have employed a multitude of different sampling protocols.
  4. We propose the Pond Acoustic Sampling Scheme (PASS), a simple protocol to allow a standardized minimal sample to be collected rapidly from small waterbodies, alongside environmental and methodological metadata. This sampling scheme can be incorporated into a variety of survey designs and is intended to allow access to a wide range of participants, without requiring complicated or prohibitively expensive equipment.
  5. Adoption of this sampling protocol would enable consistent sound recordings to be gathered by researchers and conservation organizations, and allow the development of landscape‐scale surveys, data sharing, and collaboration within an expanding freshwater ecoacoustic community—rather than individual approaches that produce incompatible datasets. The compilation of standardized data would improve the prospects for effective research into the soundscapes of small waterbodies and aid freshwater conservation efforts.
  相似文献   

3.
  1. We investigated some aspects of hawkmoth community assembly at 13 elevations along a 200‐ to 2770‐m transect in the eastern Himalayas, a little studied biodiversity hot spot of global importance. We measured the morphological traits of body mass, wing loading, and wing aspect ratio of 3,301 free‐ranging individuals of 76 species without having to collect or even constrain them. We used these trait measurements and T‐statistic metrics to assess the strength of intracommunity (“internal") and extra‐community (“external”) filters which determine the composition of communities vis‐a‐vis the regional pool of species.
  2. The trait distribution of constituent species turned out to be nonrandom subsets of the community‐trait distribution, providing strong evidence for internal filtering in all elevational communities. The external filter metric was more ambiguous. However, the elevational dependence of many metrics including that of the internal filter provided evidence for external (i.e., environmental) filtering. On average, a species occupied as much as 50%–75% of the total community‐trait space, yet the T‐statistic metric for internal filter was sufficiently sensitive to detect a strong nonrandom structure in the trait distribution.
  3. We suggest that the change in T‐statistic metrics along the environmental gradient may provide more clues to the process of community assembly than previously envisaged. A large, smoothly varying and well‐sampled environmental span would make it easier to discern them. Developing T‐statistics for combined analysis of multiple traits will perhaps provide a more accurate picture of internal/filtering and niche complementarity. Moths are a hyperdiverse taxon and a very important component of many ecosystems. Our technique for accurately measuring body and wing dimensions of free‐ranging moths can generate trait database for a large number of individuals in a time‐ and resource‐efficient manner for a variety of community assembly studies using this important taxon.
  相似文献   

4.
  1. Spatial capture–recapture (SCR) models have increasingly been used as a basis for combining capture–recapture data types with variable levels of individual identity information to estimate population density and other demographic parameters. Recent examples are the unmarked SCR (or spatial count model), where no individual identities are available and spatial mark–resight (SMR) where individual identities are available for only a marked subset of the population. Currently lacking, though, is a model that allows unidentified samples to be combined with identified samples when there are no separate classes of “marked” and “unmarked” individuals and when the two sample types cannot be considered as arising from two independent observation models. This is a common scenario when using noninvasive sampling methods, for example, when analyzing data on identified and unidentified photographs or scats from the same sites.
  2. Here we describe a “random thinning” SCR model that utilizes encounters of both known and unknown identity samples using a natural mechanistic dependence between samples arising from a single observation model. Our model was fitted in a Bayesian framework using NIMBLE.
  3. We investigate the improvement in parameter estimates by including the unknown identity samples, which was notable (up to 79% more precise) in low‐density populations with a low rate of identified encounters. We then applied the random thinning SCR model to a noninvasive genetic sampling study of brown bear (Ursus arctos) density in Oriental Cantabrian Mountains (North Spain).
  4. Our model can improve density estimation for noninvasive sampling studies for low‐density populations with low rates of individual identification, by making use of available data that might otherwise be discarded.
  相似文献   

5.
6.
  1. Restoration ecology has historically focused on reconstructing communities of highly visible taxa while less visible taxa, such as invertebrates and microbes, are ignored. This is problematic as invertebrates and microbes make up the vast bulk of biodiversity and drive many key ecosystem processes, yet they are rarely actively reintroduced following restoration, potentially limiting ecosystem function and biodiversity in these areas.
  2. In this review, we discuss the current (limited) incorporation of invertebrates and microbes in restoration and rewilding projects. We argue that these groups should be actively rewilded during restoration to improve biodiversity, ecosystem function outcomes, and highlight how they can be used to greater effect in the future. For example, invertebrates and microbes are easily manipulated, meaning whole communities can potentially be rewilded through habitat transplants in a practice that we refer to as “whole‐of‐community” rewilding.
  3. We provide a framework for whole‐of‐community rewilding and describe empirical case studies as practical applications of this under‐researched restoration tool that land managers can use to improve restoration outcomes.
  4. We hope this new perspective on whole‐of‐community restoration will promote applied research into restoration that incorporates all biota, irrespective of size, while also enabling a better understanding of fundamental ecological theory, such as colonization and competition trade‐offs. This may be a necessary consideration as invertebrates that are important in providing ecosystem services are declining globally; targeting invertebrate communities during restoration may be crucial in stemming this decline.
  相似文献   

7.
8.
  1. Length and depth of fish larvae are part of the fundamental measurements in many marine ecology studies involving early fish life history. Until now, obtaining these measurements has required intensive manual labor and the risk of inter‐ and intra‐observer variability.
  2. We developed an open‐source software solution to semi‐automate the measurement process and thereby reduce both time consumption and technical variability. Using contrast‐based edge detection, the software segments images of a fish larva into “larva” and “background.” Length and depth are extracted from the “larva” segmentation while taking curvature of the larva into consideration. The graphical user interface optimizes workflow and ease of usage, thereby reducing time consumption for both training and analysis. The software allows for visual verification of all measurements.
  3. A comparison of measurement methods on a set of larva images showed that this software reduces measurement time by 66%–78% relative to commonly used software.
  4. Using this software instead of the commonly used manual approach has the potential to save researchers from many hours of monotonous work. No adjustment was necessary for 89% of the images regarding length (70% for depth). Hence, the only workload on most images was the visual inspection. As the visual inspection and manual dimension extraction works in the same way as currently used software, we expect no loss in accuracy.
  相似文献   

9.
  1. During spawning activity, fish release large amounts of sperm and eggs into the water, which has been assumed to cause an increase in environmental DNA (eDNA) levels and nuclear DNA/mitochondrial DNA ratios. To test whether these assumptions are valid and whether nuclear and mitochondrial eDNA analysis can be used to monitor the spawning activity of freshwater fish, we conducted field eDNA surveys and traditional surveys using common carp (Cyprinus carpio), largemouth bass (Micropterus salmoides) and bluegill sunfish (Lepomis macrochirus) as model species.
  2. Fish spawning periods were estimated based on age, as estimated using the body lengths of juveniles collected in the Miharu reservoir in Fukushima, Japan. The results showed that the main spawning periods of largemouth bass and bluegill sunfish were from April to July and from July to August, respectively.
  3. Field eDNA surveys were conducted in the Hebisawagawa front reservoir, which is connected to the Miharu reservoir. From March to August 2019 and 2020, weekly eDNA sampling was conducted at three sites, and daily sampling was conducted at six sites from 23 June to 3 July 2020. The eDNA concentrations of the nuclear internal transcribed spacer 1 (ITS1) and mitochondrial cytochrome B (CytB), as well as the ITS1/CytB ratio, were measured for each of the three fish in each water sample. Water temperature had a statistically significant effect on eDNA concentration, probably reflecting the relationship between water temperature and spawning.
  4. We created generalised additive mixed models to estimate spawning activity periods based on weekly eDNA data. The estimated periods of spawning activity for common carp, largemouth bass and bluegill sunfish were March to May, May to July, and May to August, respectively. The estimated spawning periods coincided with known fish ecology or the results of traditional methods. This method also has been applied to daily eDNA samples, showing the feasibility of high-resolution estimation of spawning activity.
  5. For common carp and bluegill sunfish, we were able to estimate the spawning period using this method. Although the method is affected by biomass and the diffusion and degradation of eDNA, it has the potential to accurately estimating spawning activities. These then can be estimated without conducting laborious traditional surveys, facilitating the monitoring of reproduction by rare, invasive or important fishery species. Further research on the diffusion distance and degradation time of the eDNA concentration peak caused by fish spawning activity may improve the accuracy of monitoring.
  相似文献   

10.
  1. Plants typically interact with multiple above‐ and below‐ground organisms simultaneously, with their symbiotic relationships spanning a continuum ranging from mutualism, such as with arbuscular mycorrhizal fungi (AMF), to parasitism, including symbioses with plant‐parasitic nematodes (PPN).
  2. Although research is revealing the patterns of plant resource allocation to mutualistic AMF partners under different host and environmental constraints, the root ecosystem, with multiple competing symbionts, is often ignored. Such competition is likely to heavily influence resource allocation to symbionts.
  3. Here, we outline and discuss the competition between AMF and PPN for the finite supply of host plant resources, highlighting the need for a more holistic understanding of the influence of below‐ground interactions on plant resource allocation. Based on recent developments in our understanding of other symbiotic systems such as legume–rhizobia and AMF‐aphid‐plant, we propose hypotheses for the distribution of plant resources between contrasting below‐ground symbionts and how such competition may affect the host.
  4. We identify relevant knowledge gaps at the physiological and molecular scales which, if resolved, will improve our understanding of the true ecological significance and potential future exploitation of AMF‐PPN‐plant interactions in order to optimize plant growth. To resolve these outstanding knowledge gaps, we propose the application of well‐established methods in isotope tracing and nutrient budgeting to monitor the movement of nutrients between symbionts. By combining these approaches with novel time of arrival experiments and experimental systems involving multiple plant hosts interlinked by common mycelial networks, it may be possible to reveal the impact of multiple, simultaneous colonizations by competing symbionts on carbon and nutrient flows across ecologically important scales.
  相似文献   

11.
  1. Neighborhood competition models are powerful tools to measure the effect of interspecific competition. Statistical methods to ease the application of these models are currently lacking.
  2. We present the forestecology package providing methods to (a) specify neighborhood competition models, (b) evaluate the effect of competitor species identity using permutation tests, and (cs) measure model performance using spatial cross‐validation. Following Allen and Kim (PLoS One, 15, 2020, e0229930), we implement a Bayesian linear regression neighborhood competition model.
  3. We demonstrate the package''s functionality using data from the Smithsonian Conservation Biology Institute''s large forest dynamics plot, part of the ForestGEO global network of research sites. Given ForestGEO’s data collection protocols and data formatting standards, the package was designed with cross‐site compatibility in mind. We highlight the importance of spatial cross‐validation when interpreting model results.
  4. The package features (a) tidyverse‐like structure whereby verb‐named functions can be modularly “piped” in sequence, (b) functions with standardized inputs/outputs of simple features sf package class, and (c) an S3 object‐oriented implementation of the Bayesian linear regression model. These three facts allow for clear articulation of all the steps in the sequence of analysis and easy wrangling and visualization of the geospatial data. Furthermore, while the package only has Bayesian linear regression implemented, the package was designed with extensibility to other methods in mind.
  相似文献   

12.
According to current evidence and guidelines, continued antipsychotic treatment is key for preventing relapse in people with schizophrenia‐spectrum disorders, but evidence‐based recommendations for the choice of the individual antipsychotic for maintenance treatment are lacking. Although oral antipsychotics are often prescribed first line for practical reasons, long‐acting injectable antipsychotics (LAIs) are a valuable resource to tackle adherence issues since the earliest phase of disease. Medline, EMBASE, PsycINFO, CENTRAL and CINAHL databases and online registers were searched to identify randomized controlled trials comparing LAIs or oral antipsychotics head‐to‐head or against placebo, published until June 2021. Relative risks and standardized mean differences were pooled using random‐effects pairwise and network meta‐analysis. The primary outcomes were relapse and dropout due to adverse events. We used the Cochrane Risk of Bias tool to assess study quality, and the CINeMA approach to assess the confidence of pooled estimates. Of 100 eligible trials, 92 (N=22,645) provided usable data for meta‐analyses. Regarding relapse prevention, the vast majority of the 31 included treatments outperformed placebo. Compared to placebo, “high” confidence in the results was found for (in descending order of effect magnitude) amisulpride‐oral (OS), olanzapine‐OS, aripiprazole‐LAI, olanzapine‐LAI, aripiprazole‐OS, paliperidone‐OS, and ziprasidone‐OS. “Moderate” confidence in the results was found for paliperidone‐LAI 1‐monthly, iloperidone‐OS, fluphenazine‐OS, brexpiprazole‐OS, paliperidone‐LAI 1‐monthly, asenapine‐OS, haloperidol‐OS, quetiapine‐OS, cariprazine‐OS, and lurasidone‐OS. Regarding tolerability, none of the antipsychotics was significantly worse than placebo, but confidence was poor, with only aripiprazole (both LAI and OS) showing “moderate” confidence levels. Based on these findings, olanzapine, aripiprazole and paliperidone are the best choices for the maintenance treatment of schizophrenia‐spectrum disorders, considering that both LAI and oral formulations of these antipsychotics are among the best‐performing treatments and have the highest confidence of evidence for relapse prevention. This finding is of particular relevance for low‐ and middle‐income countries and constrained‐resource settings, where few medications may be selected. Results from this network meta‐analysis can inform clinical guidelines and national and international drug regulation policies.  相似文献   

13.
  1. Understanding how abiotic conditions influence dispersal patterns of organisms is important for understanding the degree to which species can track and persist in the face of changing climate.
  2. The goal of this study was to understand how weather conditions influence the dispersal pattern of multiple nonmigratory grasshopper species from lower elevation grassland habitats in which they complete their life‐cycles to higher elevations that extend beyond their range limits.
  3. Using over a decade of weekly spring to late‐summer field survey data along an elevational gradient, we explored how abundance and richness of dispersing grasshoppers were influenced by temperature, precipitation, and wind speed and direction. We also examined how changes in population sizes at lower elevations might influence these patterns.
  4. We observed that the abundance of dispersing grasshoppers along the gradient declined 4‐fold from the foothills to the subalpine and increased with warmer conditions and when wind flow patterns were mild or in the downslope direction. Thirty‐eight unique grasshopper species from lowland sites were detected as dispersers across the survey years, and warmer years and weak upslope wind conditions also increased the richness of these grasshoppers. The pattern of grasshoppers along the gradient was not sex biased. The positive effect of temperature on dispersal rates was likely explained by an increase in dispersal propensity rather than by an increase in the density of grasshoppers at low elevation sites.
  5. The results of this study support the hypothesis that the dispersal patterns of organisms are influenced by changing climatic conditions themselves and as such, that this context‐dependent dispersal response should be considered when modeling and forecasting the ability of species to respond to climate change.
  相似文献   

14.
  1. Almost all organisms grow in size during their lifetime and switch diets, trophic positions, and interacting partners as they grow. Such ontogenetic development introduces life‐history stages and flows of biomass between the stages through growth and reproduction. However, current research on complex food webs rarely considers life‐history stages. The few previously proposed methods do not take full advantage of the existing food web structural models that can produce realistic food web topologies.
  2. We extended the niche model developed by Williams and Martinez (Nature, 2000, 404, 180–183) to generate food webs that included trophic species with a life‐history stage structure. Our method aggregated trophic species based on niche overlap to form a life‐history structured population; therefore, it largely preserved the topological structure of food webs generated by the niche model. We applied the theory of allometric predator–prey body mass ratio and parameterized an allometric bioenergetic model augmented with biomass flow between stages via growth and reproduction to study the effects of a stage structure on the stability of food webs.
  3. When life‐history stages were linked via growth and reproduction, more food webs persisted, and persisting food webs tended to retain more trophic species. Topological differences between persisting linked and unlinked food webs were small to modest. The slopes of biomass spectra were lower, and weak interaction links were more prevalent in the linked food webs than the unlinked ones, suggesting that a life‐history stage structure promotes characteristics that can enhance stability of complex food webs.
  4. Our results suggest a positive relationship between the complexity and stability of complex food webs. A life‐history stage structure in food webs may play important roles in dynamics of and diversity in food webs.
  相似文献   

15.
  1. With the increase in global trade and warming patterns, the movement, introduction, and establishment of non‐native insect species has increased. A rapid and effective early detection biosurveillance program to identify species of concern is needed to reduce future impacts and costs associated with introduced non‐native species. One of the challenges facing insect surveillance trapping methods is the sheer volume of individual specimens in the collections. Although molecular identification methods are improving, they currently have limitations (e.g., destructive processing of specimens) and a protocol addressing these limitations can support regulatory applications that need morphological evidence to corroborate molecular data.
  2. The novel protocol presented here uses a metabarcoding approach to amplify environmental DNA from a saturated salt solution trap fluid, which retains trap specimens for downstream morphological identifications. The use of a saturated salt solution to preserve specimens in traps addresses issues with the high evaporation rate of ethanol in traps, and public safety concerns with other fluid preservation options with unattended traps in public settings.
  3. Using a metabarcoding approach, a 407‐nucleotide segment of the cytochrome c oxidase subunit 1 (COI) animal barcode region was successfully amplified from Lindgren funnel trap collection fluids. These traps were placed in forested areas to survey for wood‐boring beetles of regulatory concern. Our results displayed successful amplification of target taxa, including the molecular identification of the Japanese Beetle Popillia japonica, a species regulated in Canada. A second species, Anisandrus maiche, recently introduced to North America, was identified in every trap. The genus Lymantria, which contains numerous species of concern to North American woodlands, was also detected. Also, there were six other species identified of interest due to their potential impacts on native and crop flora and fauna.
  4. Our results show how this protocol can be used as an efficient method for the surveillance of insects using a trap with a saturated salt solution and eDNA metabarcoding to detect species of regulatory concern.
  相似文献   

16.
It is common experience for practising psychiatrists that individuals with schizophrenia vary markedly in their symptomatic response to antipsychotic medication. What is not clear, however, is whether this variation reflects variability of medication‐specific effects (also called “treatment effect heterogeneity”), as opposed to variability of non‐specific effects such as natural symptom fluctuation or placebo response. Previous meta‐analyses found no evidence of treatment effect heterogeneity, suggesting that a “one size fits all” approach may be appropriate and that efforts at developing personalized treatment strategies for schizophrenia are unlikely to succeed. Recent advances indicate, however, that earlier approaches may have been unable to accurately quantify treatment effect heterogeneity due to their neglect of a key parameter: the correlation between placebo response and medication‐specific effects. In the present paper, we address this shortcoming by using individual patient data and study‐level data to estimate that correlation and quantitatively characterize antipsychotic treatment effect heterogeneity in schizophrenia. Individual patient data (on 384 individuals who were administered antipsychotic treatment and 88 who received placebo) were obtained from the Yale University Open Data Access (YODA) database. Study‐level data were obtained from a meta‐analysis of 66 clinical trials including 17,202 patients. Both individual patient and study‐level analyses yielded a negative correlation between placebo response and treatment effect for the total score on the Positive and Negative Syndrome Scale (PANSS) (ρ=–0.32, p=0.002 and ρ=–0.39, p<0.001, respectively). Using the most conservative of these estimates, a meta‐analysis of treatment effect heterogeneity provided evidence of a marked variability in antipsychotic‐specific effects between individuals with schizophrenia, with the top quartile of patients experiencing beneficial treatment effects of 17.7 points or more on the PANSS total score, while the bottom quartile presented a detrimental effect of treatment relative to placebo. This evidence of clinically meaningful treatment effect heterogeneity suggests that efforts to personalize antipsychotic treatment of schizophrenia have potential for success.  相似文献   

17.
  1. Many animal personality traits have implicit movement‐based definitions and can directly or indirectly influence ecological and evolutionary processes. It has therefore been proposed that animal movement studies could benefit from acknowledging and studying consistent interindividual differences (personality), and, conversely, animal personality studies could adopt a more quantitative representation of movement patterns.
  2. Using high‐resolution tracking data of three‐spined stickleback fish (Gasterosteus aculeatus), we examined the repeatability of four movement parameters commonly used in the analysis of discrete time series movement data (time stationary, step length, turning angle, burst frequency) and four behavioral parameters commonly used in animal personality studies (distance travelled, space use, time in free water, and time near objects).
  3. Fish showed repeatable interindividual differences in both movement and behavioral parameters when observed in a simple environment with two, three, or five shelters present. Moreover, individuals that spent less time stationary, took more direct paths, and less commonly burst travelled (movement parameters), were found to travel farther, explored more of the tank, and spent more time in open water (behavioral parameters).
  4. Our case study indicates that the two approaches—quantifying movement and behavioral parameters—are broadly equivalent, and we suggest that movement parameters can be viewed as “micropersonality” traits that give rise to broad‐scale consistent interindividual differences in behavior. This finding has implications for both personality and movement ecology research areas. For example, the study of movement parameters may provide a robust way to analyze individual personalities in species that are difficult or impossible to study using standardized behavioral assays.
  相似文献   

18.
  1. A recent analysis of variation in six major traits conducted on a large worldwide sample of vascular plant species showed that three‐quarters of trait variation was captured by a two‐dimensional global spectrum of plant form and function (“global spectrum” hereafter). We developed the PhenoSpace application, whose aim is to visualize and export the position of any individual/population/species in the phenotypic space of the global spectrum.
  2. PhenoSpace is a Shiny application that helps users to manipulate and visualize data pertaining to the global spectrum of plant form and function. It is freely accessible at the following URL: https://shiny.cefe.cnrs.fr/PhenoSpace/.
  3. PhenoSpace has three main functionalities. First, it allows users to visualize the phenotypic space of the global spectrum using different combinations of traits and growth forms. Second, trait data from any new user‐defined dataset can be projected onto the phenotypic space of the global spectrum, provided that at least two of the six traits are available. Finally, figures produced and loadings of the imported data on the PCA axes can be downloaded, allowing users to conduct further analyses.
  4. PhenoSpace fulfills the practical goal of positioning plants in the phenotypic space of the global spectrum, making it possible to compare trait variation at any level of organization against the worldwide background. This serves a major aim of comparative plant ecology, which is to put specific sets of individuals, populations or species into a broader context, facilitating comparison and synthesis of results across different continents and environments using relevant indicators of plant design and function.
  相似文献   

19.
  1. Mutual reinforcement between abiotic and biotic factors can drive small populations into a catastrophic downward spiral to extinction—a process known as the “extinction vortex.” However, empirical studies investigating extinction dynamics in relation to species'' traits have been lacking.
  2. We assembled a database of 35 vertebrate populations monitored to extirpation over a period of at least ten years, represented by 32 different species, including 25 birds, five mammals, and two reptiles. We supplemented these population time series with species‐specific mean adult body size to investigate whether this key intrinsic trait affects the dynamics of populations declining toward extinction.
  3. We performed three analyses to quantify the effects of adult body size on three characteristics of population dynamics: time to extinction, population growth rate, and residual variability in population growth rate.
  4. Our results provide support for the existence of extinction vortex dynamics in extirpated populations. We show that populations typically decline nonlinearly to extinction, while both the rate of population decline and variability in population growth rate increase as extinction is approached. Our results also suggest that smaller‐bodied species are particularly prone to the extinction vortex, with larger increases in rates of population decline and population growth rate variability when compared to larger‐bodied species.
  5. Our results reaffirm and extend our understanding of extinction dynamics in real‐life extirpated populations. In particular, we suggest that smaller‐bodied species may be at greater risk of rapid collapse to extinction than larger‐bodied species, and thus, management of smaller‐bodied species should focus on maintaining higher population abundances as a priority.
  相似文献   

20.
  1. Understanding the mechanisms underlying spatial variability of exploited fish is critical for the sustainable management of fish stocks. Empirical studies suggest that size‐selective fishing can elevate fish population spatial variability (i.e., more heterogeneous distribution) through age truncation, making the population less resilient to changing environment. However, species differ in how their spatial variability responds to age truncation and the underlying mechanisms remain unclear.
  2. We hypothesize that age‐specific habitat preference, together with environmental carrying capacity and landscape structure, determines the response of population spatial variability to fishing‐induced age truncation. To test these hypotheses, we design an individual‐based model of an age‐structured fish population on a two‐dimensional landscape under size‐selective fishing. Individual fish reproduces and survives, and moves between habitats according to age‐specific habitat preference and density‐dependent habitat selection.
  3. Population spatial variability elevates with increasing age truncation, and the response is stronger for populations with stronger age‐specific habitat preference. On a gradient landscape, reducing carrying capacity elevates the relative importance of density dependence in habitat selection, which weakens the response of spatial variability to age truncation for populations with strong age‐specific habitat preference. On a fragmented landscape, both populations with strong and weak age‐specific habitat preferences are restricted at local optimal habitats, and reducing carrying capacity weakens the responses of spatial variability to age truncation for both populations.
  4. Synthesis and applications. We demonstrate that to track and predict the changes in population spatial variability under exploitation, it is essential to consider the interactive effects of age‐specific habitat preference, carrying capacity, and landscape structure. To improve spatial management in fisheries, it is crucial to enhance empirical and theoretical developments in the methodology to quantify age‐specific habitat preference of marine fish, and to understand how climatic change influences carrying capacity and landscape continuity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号