首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptation in nature is ubiquitous, yet characterizing its genomic basis is difficult because population demographics cause correlations with nonadaptive loci. Introduction events provide opportunities to observe adaptation over known spatial and temporal scales, facilitating the identification of genes involved in adaptation. The pathogen causing avian malaria, Plasmodium relictum, was introduced to Hawai'i in the 1930s and elicited extinctions and precipitous population declines in native honeycreepers. After a sharp initial population decline, the Hawai'i ‘amakihi (Chlorodrepanis virens) has evolved tolerance to the parasite at low elevations where P. relictum exists, and can sustain infection without major fitness consequences. High‐elevation, unexposed populations of ‘amakihi display little to no tolerance. To explore the genomic basis of adaptation to P. relictum in low‐elevation ‘amakihi, we genotyped 125 ‘amakihi from the island of Hawai'i via hybridization capture to 40,000 oligonucleotide baits containing SNPs and used the reference ‘amakihi genome to identify genes potentially under selection from malaria. We tested for outlier loci between low‐ and high‐elevation population pairs and identified loci with signatures of selection within low‐elevation populations. In some cases, genes commonly involved in the immune response (e.g., major histocompatibility complex) were associated with malaria presence in the population. We also detected several novel candidate loci that may be implicated in surviving malaria infection (e.g., beta‐defensin, glycoproteins and interleukin‐related genes). Our results suggest that rapid adaptation to pathogens may occur through changes in different immune genes, but in the same classes of genes, across populations.  相似文献   

2.
Knowing the genetic variation that occurs in pathogen populations and how it is distributed across geographical areas is essential to understand parasite epidemiology, local patterns of virulence, and evolution of host‐resistance. In addition, it is important to identify populations of pathogens that are evolutionarily independent and thus ‘free’ to adapt to hosts and environments. Here, we investigated genetic variation in the globally distributed, highly invasive avian malaria parasite Plasmodium relictum, which has several distinctive mitochondrial haplotyps (cyt b lineages, SGS1, GRW11 and GRW4). The phylogeography of P. relictum was accessed using the highly variable nuclear gene merozoite surface protein 1 (MSP1), a gene linked to the invasion biology of the parasite. We show that the lineage GRW4 is evolutionarily independent of GRW11 and SGS1 whereas GRW11 and SGS1 share MSP1 alleles and thus suggesting the presence of two distinct species (GRW4 versus SGS1 and GRW11). Further, there were significant differences in the global distribution of MSP1 alleles with differences between GRW4 alleles in the New and the Old World. For SGS1, a lineage formerly believed to have both tropical and temperate transmission, there were clear differences in MSP1 alleles transmitted in tropical Africa compared to the temperate regions of Europe and Asia. Further, we highlight the occurrence of multiple MSP1 alleles in GRW4 isolates from the Hawaiian Islands, where the parasite has contributed to declines and extinctions of endemic forest birds since it was introduced. This study stresses the importance of multiple independent loci for understanding patterns of transmission and evolutionary independence across avian malaria parasites.  相似文献   

3.
We cultured avian pox (Avipoxvirus spp.) from lesions collected on Hawai‘i, Maui, Moloka‘i, and ‘Oahu in the Hawaiian Islands from 15 native or non-native birds representing three avian orders. Phylogenetic analysis of a 538 bp fragment of the gene encoding the virus 4b core polypeptide revealed two distinct variant clusters, with sequences from chickens (fowlpox) forming a third distinct basal cluster. Pox isolates from one of these two clusters appear closely related to canarypox and other passerine pox viruses, while the second appears more specific to Hawai‘i. There was no evidence that birds were infected simultaneously with multiple pox virus variants based on evaluation of multiples clones from four individuals. No obvious temporal or geographic associations were observed and strict host specificity was not apparent among the 4b-defined field isolates. We amplified a 116 bp 4b core protein gene fragment from an ‘Elepaio (Chasiempis sandwichensis) collected in 1900 on Hawai‘i Island that clustered closely with the second of the two variants, suggesting that this variant has been in Hawai‘i for at least 100 years. The high variation detected between the three 4b clusters provides evidence for multiple, likely independent introductions, and does not support the hypothesis of infection of native species through introduction of infected fowl. Preliminary experimental infections in native Hawai‘i ‘Amakihi (Hemignathus virens) suggest that the 4b-defined variants may be biologically distinct, with one variant appearing more virulent. These pox viruses may interact with avian malaria (Plasmodium relictum), another introduced pathogen in Hawaiian forest bird populations, through modulation of host immune responses.  相似文献   

4.
One group of commonly found parasites in birds, for which fitness consequences and effects on life history traits have been much debated are Haemosporidian blood parasites. In a long term study population of great reed warblers Acrocephalus arundinaceus in Sweden, previous studies have shown that the Haemosporidian blood parasites are in their chronic phase during the breeding season and that the fitness of infected and non‐infected birds are similar. In the present study, we quantified parasite intensity (parasitemia) in 718 adults great reed warblers sampled between 1987 and 1998 for the three most common parasite species; Haemoproteus payevskyi (lineage GRW1), Plasmodium ashfordi (GRW2) and Plasmodium relictum (GRW4). We verified that the q‐PCR method is accurately quantifying Haemoproteus payevskyi (GRW1) as it was highly correlated with the number of parasites seen under microscope. Frequency of mixed infections with two lineages was significantly higher than expected based on the prevalence of each of the three parasite lineages. The mean level of parasitemia was significantly different for the three lineages and individual birds had repeatable parasitemia levels between years. Females tended to have a higher parasitemia than males for all three parasite lineages combined. Females with higher GRW1 parasitemia tended to arrive later in spring to their breeding sites. There was a negative correlation between parasitemia and number of fledged offspring for GRW1, and a tendency for a negative correlation between GRW2 parasitemia and the proportion of recruiting offspring. Overall our results demonstrate that chronic Haemosporidian infections can have slight but significant effects on host life history traits, and therefore may act as important selective agents in wild bird populations.  相似文献   

5.
The effects of avian malaria parasites of the genus Plasmodium on their hosts are insufficiently understood. This is particularly true for malarial co-infections, which predominant in many bird populations. We investigated effects of primary co-infection of Plasmodium relictum (lineage SGS1) and Plasmodium ashfordi (GRW2) on experimentally infected naive juveniles of siskin Spinus spinus, crossbill Loxia curvirostra and starling Sturnus vulgaris. All siskins and crossbills were susceptible but starlings resistant to both these infections. A general pattern of the co-infections was that heavy parasitemia (over 35% during peaks) of both parasites developed in both susceptible host species. There were no significant effects of the co-infections on mean body mass of the majority of infected birds. Mean haematocrit value decreased approximately 1.5 and 3 times in siskins and crossbills at the peak of parasitemia, respectively. Mortality was recorded among infected crossbills. We conclude that co-infections of P. relictum and P. ashfordi are highly virulent and act synergetically during primary infections in some but not all passerine birds.  相似文献   

6.
7.
8.
9.
Malaria parasites have been shown to adjust their life history traits to changing environmental conditions. Parasite relapses and recrudescences—marked increases in blood parasite numbers following a period when the parasite was either absent or present at very low levels in the blood, respectively—are expected to be part of such adaptive plastic strategies. Here, we first present a theoretical model that analyses the evolution of transmission strategies in fluctuating seasonal environments and we show that relapses may be adaptive if they are concomitant with the presence of mosquitoes in the vicinity of the host. We then experimentally test the hypothesis that Plasmodium parasites can respond to the presence of vectors. For this purpose, we repeatedly exposed birds infected by the avian malaria parasite Plasmodium relictum to the bites of uninfected females of its natural vector, the mosquito Culex pipiens, at three different stages of the infection: acute (∼34 days post infection), early chronic (∼122 dpi) and late chronic (∼291 dpi). We show that: (i) mosquito-exposed birds have significantly higher blood parasitaemia than control unexposed birds during the chronic stages of the infection and that (ii) this translates into significantly higher infection prevalence in the mosquito. Our results demonstrate the ability of Plasmodium relictum to maximize their transmission by adopting plastic life history strategies in response to the availability of insect vectors.  相似文献   

10.
Malaria is the most serious mosquito‐borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub‐populations. Seeking to identify EV subpopulations, we subject malaria‐derived EVs to size‐separation analysis, using asymmetric flow field‐flow fractionation. Multi‐technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement‐system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine‐learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.  相似文献   

11.
The trade‐off between within‐host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life‐history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross‐kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within‐host infection rate and transmission potential. The strains differed in the measured life‐history traits and their correlations. Moreover, we found that under virus coinfection, within‐host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within‐host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within‐host and between‐host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between‐hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within‐host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade‐off between within‐host infection load and transmission may be strain specific, and that the pathogen life‐history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.  相似文献   

12.
Haemosporidians are among the most common parasites of birds and often negatively impact host fitness. A multitude of biotic and abiotic factors influence these associations, but the magnitude of these factors can differ by spatial scales (i.e., local, regional and global). Consequently, to better understand global and regional drivers of avian‐haemosporidian associations, it is key to investigate these associations at smaller (local) spatial scales. Thus, here, we explore the effect of abiotic variables (e.g., temperature, forest structure, and anthropogenic disturbances) on haemosporidian prevalence and host–parasite networks on a horizontal spatial scale, comparing four fragmented forests and five localities within a continuous forest in Papua New Guinea. Additionally, we investigate if prevalence and host–parasite networks differ between the canopy and the understory (vertical stratification) in one forest patch. We found that the majority of Haemosporidian infections were caused by the genus Haemoproteus and that avian‐haemosporidian networks were more specialized in continuous forests. At the community level, only forest greenness was negatively associated with Haemoproteus infections, while the effects of abiotic variables on parasite prevalence differed between bird species. Haemoproteus prevalence levels were significantly higher in the canopy, and an opposite trend was observed for Plasmodium. This implies that birds experience distinct parasite pressures depending on the stratum they inhabit, likely driven by vector community differences. These three‐dimensional spatial analyses of avian‐haemosporidians at horizontal and vertical scales suggest that the effect of abiotic variables on haemosporidian infections are species specific, so that factors influencing community‐level infections are primarily driven by host community composition.  相似文献   

13.
Inferring parameters related to the aggregation pattern of parasites and to their dispersal propensity are important for predicting their ecological consequences and evolutionary potential. Nonetheless, it is notoriously difficult to infer these parameters from wildlife parasites given the difficulty in tracking these organisms. Molecular‐based inferences constitute a promising approach that has yet rarely been applied in the wild. Here, we combined several population genetic analyses including sibship reconstruction to document the genetic structure, patterns of sibship aggregation, and the dispersal dynamics of a non‐native parasite of fish, the freshwater copepod ectoparasite Tracheliastes polycolpus. We collected parasites according to a hierarchical sampling design, with the sampling of all parasites from all host individuals captured in eight sites spread along an upstream–downstream river gradient. Individual multilocus genotypes were obtained from 14 microsatellite markers, and used to assign parasites to full‐sib families and to investigate the genetic structure of Tpolycolpus among both hosts and sampling sites. The distribution of full‐sibs obtained among the sampling sites was used to estimate individual dispersal distances within families. Our results showed that Tpolycolpus sibs tend to be aggregated within sites but not within host individuals. We detected important upstream‐to‐downstream dispersal events of Tpolycolpus between sites (modal distance: 25.4 km; 95% CI [22.9, 27.7]), becoming scarcer as the geographic distance from their family core location increases. Such a dispersal pattern likely contributes to the strong isolation‐by‐distance observed at the river scale. We also detected some downstream‐to‐upstream dispersal events (modal distance: 2.6 km; 95% CI [2.2–23.3]) that likely result from movements of infected hosts. Within each site, the dispersal of free‐living infective larvae among hosts likely contributes to increasing genetic diversity on hosts, possibly fostering the evolutionary potential of T. polycolpus.  相似文献   

14.
Compared to the striking diversification and levels of endemism observed in many terrestrial groups within the Hawaiian Archipelago, marine invertebrates exhibit remarkably lower rates of endemism and diversification. Supralittoral invertebrates restricted to specific coastal patchy habitats, however, have the potential for high levels of allopatric diversification. This is the case of Ligia isopods endemic to the Hawaiian Archipelago, which most likely arose from a rocky supralittoral ancestor that colonized the archipelago via rafting, and diversified into rocky supralittoral and inland lineages. A previous study on populations of this isopod from Oʻahu and Kauaʻi revealed high levels of allopatric differentiation, and suggested inter-island historical dispersal events have been rare. To gain a better understanding on the diversity and evolution of this group, we expanded prior phylogeographic work by incorporating populations from unsampled main Hawaiian Islands (Maui, Molokaʻi, Lanaʻi, and Hawaiʻi), increasing the number of gene markers (four mitochondrial and two nuclear genes), and conducting Maximum likelihood and Bayesian phylogenetic analyses. Our study revealed new lineages and expanded the distribution range of several lineages. The phylogeographic patterns of Ligia in the study area are complex, with Hawaiʻi, Oʻahu, and the Maui-Nui islands sharing major lineages, implying multiple inter-island historical dispersal events. In contrast, the oldest and most geographically distant of the major islands (Kauaʻi) shares no lineages with the other islands. Our results did not support the monophyly of all the supralittoral lineages (currently grouped into L. hawaiensis), or the monophyly of the terrestrial lineages (currently grouped into L. perkinsi), implying more than one evolutionary transition between coastal and inland forms. Geometric-morphometric analyses of three supralittoral clades revealed significant body shape differences among them. A taxonomic revision of Hawaiian Ligia is warranted. Our results are relevant for the protection of biodiversity found in an environment subject to high pressure from disturbances.  相似文献   

15.
The epidemiology of vector‐borne pathogens is largely determined by the host‐choice behaviour of their vectors. Here, we investigate whether a Plasmodium infection renders the host more attractive to host‐seeking mosquitoes. For this purpose, we work on a novel experimental system: the avian malaria parasite Plasmodium relictum, and its natural vector, the mosquito Culex pipiens. We provide uninfected mosquitoes with a choice between an uninfected bird and a bird undergoing either an acute or a chronic Plasmodium infection. Mosquito choice is assessed by microsatellite typing of the ingested blood. We show that chronically infected birds attract significantly more vectors than either uninfected or acutely infected birds. Our results suggest that malaria parasites manipulate the behaviour of uninfected vectors to increase their transmission. We discuss the underlying mechanisms driving this behavioural manipulation, as well as the broader implications of these effects for the epidemiology of malaria.  相似文献   

16.
17.
18.
SARS‐CoV‐2 is an emerging coronavirus that causes dysfunctions in multiple human cells and tissues. Studies have looked at the entry of SARS‐CoV‐2 into host cells mediated by the viral spike protein and human receptor ACE2. However, less is known about the cellular immune responses triggered by SARS‐CoV‐2 viral proteins. Here, we show that the nucleocapsid of SARS‐CoV‐2 inhibits host pyroptosis by blocking Gasdermin D (GSDMD) cleavage. SARS‐CoV‐2‐infected monocytes show enhanced cellular interleukin‐1β (IL‐1β) expression, but reduced IL‐1β secretion. While SARS‐CoV‐2 infection promotes activation of the NLRP3 inflammasome and caspase‐1, GSDMD cleavage and pyroptosis are inhibited in infected human monocytes. SARS‐CoV‐2 nucleocapsid protein associates with GSDMD in cells and inhibits GSDMD cleavage in vitro and in vivo. The nucleocapsid binds the GSDMD linker region and hinders GSDMD processing by caspase‐1. These insights into how SARS‐CoV‐2 antagonizes cellular inflammatory responses may open new avenues for treating COVID‐19 in the future.  相似文献   

19.
20.
Parasite range expansions are a direct consequence of globalization and are an increasing threat to biodiversity. Here, we report a recent range expansion of the SGS1 strain of a highly invasive parasite, Plasmodium relictum, to two non-migratory passerines in North America. Plasmodium relictum is considered one of the world''s most invasive parasites and causes the disease avian malaria: this is the first reported case of SGS1 in wild non-migratory birds on the continent. Using a long-term database where researchers report avian malaria parasite infections, we summarized our current understanding of the geographical range of SGS1 and its known hosts. We also identified the most likely geographical region of this introduction event using the MSP1 allele. We hypothesize that this introduction resulted from movements of captive birds and subsequent spillover to native bird populations, via the presence of competent vectors and ecological fitting. Further work should be conducted to determine the extent to which SGS1 has spread following its introduction in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号