首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lin28a has diverse functions including regulation of cancer, reprogramming and regeneration, but whether it promotes injury or is a protective reaction to renal injury is unknown. We studied how Lin28a acts in unilateral ureteral obstruction (UUO)-induced renal fibrosis following unilateral ureteral obstruction, in a mouse model. We further defined the role of Lin28a in transforming growth factor (TGF)-signaling pathways in renal fibrosis through in vitro study using human tubular epithelium-like HK-2 cells. In the mouse unilateral ureteral obstruction model, obstruction markedly decreased the expression of Lin28a, increased the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin. In TGF-β-stimulated HK-2 cells, the expression of Lin28a was reduced and the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin was increased. Adenovirus-mediated overexpression of Lin28a inhibited the expression of TGF-β-stimulated type I collagen, α-SMA, vimentin and fibronectin. Lin28a inhibited TGF-β-stimulated SMAD3 activity, via inhibition of SMAD3 phos-phorylation, but not the MAPK pathway ERK, JNK or p38. Lin28a attenuates renal fibrosis in obstructive nephropathy, making its mechanism a possible therapeutic target for chronic kidney disease.  相似文献   

2.
目的:研究正常雌性Sprague-Dawle(SD)大鼠不同性发育阶段及雌激素诱导性早熟后下丘脑Lin28a和Lin28b的表达及意义。方法:1)于雌性SD大鼠出生后15日(postnatal day 15,PND15)、PND23、PND35荧光实时定量PCR分析下丘脑Lin28a和Lin28b mRNA的表达,同时以ELISA法检测血清黄体生成素(LH)和雌二醇(E2)水平变化;2)苯甲酸雌二醇(estradiol benzoate,EB)诱导的性早熟大鼠随机分为EB-1组和EB-2组,分别于阴道开口(vaginal opening,VO)时及PND56两个时间点处死,相应的发育阶段的大鼠用无菌芝麻油(sesame oil,OIL)作为对照分为OIL-1和OIL-2组;荧光实时定量PCR分析下丘脑Lin28a和Lin28b mRNA的表达,ELISA法检测LH和E2水平变化,并观察性早熟对大鼠阴道开口、体重、顶臀径、胫骨长等生长发育指标的影响。结果:1)PND15、PND23和PND35组下丘脑Lin28a和Lin28b mRNA表达、血清LH和E2水平无统计学差异(P〉0.05);2)EB-1组下丘脑Lin28a和Lin28b mRNA表达高于OIL-1组(P〈0.05),血清LH和E2水平与OIL-1组相比无统计学差异(P〉0.05);EB-2组下丘脑Lin28a和Lin28b mRNA表达高于OIL-2组(P〈0.05),血清LH和E2水平低于OIL-2组(P〈0.05);3)与OIL-2组比较,EB-2组VO时间明显提前(P〈0.01),体重、顶臀长、胫骨长差异无统计学差异(P〉0.05)。结论:外源性雌激素引起的性早熟可能导致下丘脑Lin28a和Lin28b表达异常。  相似文献   

3.
目的:研究正常雌性Sprague-Dawle(SD)大鼠不同性发育阶段及雌激素诱导性早熟后下丘脑Lin28a和Lin28b的表达及意义。方法:1)于雌性SD大鼠出生后15日(postnatal day 15,PND15)、PND23、PND35荧光实时定量PCR分析下丘脑Lin28a和Lin28b mRNA的表达,同时以ELISA法检测血清黄体生成素(LH)和雌二醇(E2)水平变化;2)苯甲酸雌二醇(estradiol benzoate,EB)诱导的性早熟大鼠随机分为EB-1组和EB-2组,分别于阴道开口(vaginal opening,VO)时及PND56两个时间点处死,相应的发育阶段的大鼠用无菌芝麻油(sesame oil,OIL)作为对照分为OIL-1和OIL-2组;荧光实时定量PCR分析下丘脑Lin28a和Lin28b mRNA的表达,ELISA法检测LH和E2水平变化,并观察性早熟对大鼠阴道开口、体重、顶臀径、胫骨长等生长发育指标的影响。结果:1)PND15、PND23和PND35组下丘脑Lin28a和Lin28b mRNA表达、血清LH和E2水平无统计学差异(P0.05);2)EB-1组下丘脑Lin28a和Lin28b mRNA表达高于OIL-1组(P0.05),血清LH和E2水平与OIL-1组相比无统计学差异(P0.05);EB-2组下丘脑Lin28a和Lin28b mRNA表达高于OIL-2组(P0.05),血清LH和E2水平低于OIL-2组(P0.05);3)与OIL-2组比较,EB-2组VO时间明显提前(P0.01),体重、顶臀长、胫骨长差异无统计学差异(P0.05)。结论:外源性雌激素引起的性早熟可能导致下丘脑Lin28a和Lin28b表达异常。  相似文献   

4.
5.
The PI3K/Akt/mTOR signaling pathway plays a key regulatory function in cell survival, proliferation, migration, metabolism and apoptosis. Aberrant activation of the PI3K/Akt/mTOR pathway is found in many types of cancer and thus plays a major role in breast cancer cell proliferation. In our previous studies, benzo[b]furan derivatives were evaluated for their anticancer activity and the lead compounds identified were 26 and 36. These observations prompted us to investigate the molecular mechanism and apoptotic pathway of these lead molecules against breast cancer cells. Benzo[b]furan derivatives (26 and 36) were evaluated for their antiproliferative activity against human breast cancer cell lines MCF-7 and MDA MB-231. These compounds (26 and 36) have shown potent efficiency against breast cancer cells (MCF-7) with IC50 values 0.057 and 0.051 μM respectively. Cell cycle analysis revealed that these compounds induced cell cycle arrest at G2/M phase in MCF-7 cells. Western blot analysis revealed that these compounds inhibit the PI3K/Akt/mTOR signaling pathway and induced mitochondrial mediated apoptosis in human breast cancer cells (MCF-7).  相似文献   

6.
Lin28a and Lin28b, homologs of the Caenorhabditis elegans Lin28 gene, play important roles in cell pluripotency, reprogramming, and tumorigenicity. Recently, genome‐wide association and transgenic studies showed that Lin28a and/or Lin28b gene were involved in the onset of mammalian puberty, the stage representing the attainment of reproduction capacity; however, the detailed mechanism of these genes in mammalian puberty remains largely unknown. The present paper reviews the research progress on the roles of Lin28a/b genes in the onset of mammalian puberty by analyzing the results coming from gene expression patterns, mutations, and transgenic studies, and put forward possible pathways for further studies on their roles in animal reproduction.  相似文献   

7.
8.
The insulin‐PI3K‐mTOR pathway exhibits a variety of cardiovascular activities including protection against I/R injury. Lin28a enhanced glucose uptake and insulin‐sensitivity via insulin‐PI3K‐mTOR signalling pathway. However, the role of lin28a on experimental cardiac I/R injury in diabetic mice are not well understood. Diabetic mice underwent 30 min. of ischaemia followed by 3 hrs of reperfusion. Animals were randomized to be treated with lentivirus carrying lin28a siRNA (siLin28a) or lin28a cDNA (Lin28a) 72 hrs before coronary artery ligation. Myocardial infarct size (IS), cardiac function, cardiomyocyte apoptosis and mitochondria morphology in diabetic mice who underwent cardiac I/R injury were compared between groups. The target proteins of lin28a were examined by western blot analysis. Lin28a overexpression significantly reduced myocardial IS, improved LV ejection fraction (LVEF), decreased myocardial apoptotic index and alleviated mitochondria cristae destruction in diabetic mice underwent cardiac I/R injury. Lin28a knockdown exacerbated cardiac I/R injury as demonstrated by increased IS, decreased LVEF, increased apoptotic index and aggravated mitochondria cristae destruction. Interestingly, pre‐treatment with rapamycin abolished the beneficial effects of lin28a overexpression. Lin28a overexpression increased, while Lin28a knockdown decreased the expression of IGF1R, p‐Akt, p‐mTOR and p‐p70s6k after cardiac I/R injury in diabetic mice. Rapamycin pre‐treatment abolished the effects of increased p‐mTOR and p‐p70s6k expression exerted by lin28a overexpression. This study indicates that lin28a overexpression reduces IS, improves cardiac function, decreases cardiomyocyte apoptosis index and alleviates cardiomyocyte mitochondria impairment after cardiac I/R injury in diabetic mice. The mechanism responsible for the effects of lin28a is associated with the insulin‐PI3K‐mTOR dependent pathway.  相似文献   

9.
Hypecoum leptocarpum is a traditional Tibetan Medicine, which has been shown to have anti-cancer properties. Therefore, developing anti-cancer activity compounds from Hypecoum leptocarpum is very valuable. Notably, corydamine, an isoquinoline alkaloid, is isolated from Hypecoum leptocarpum. Given the anti-cancer value of Hypecoum leptocarpum, lucubrating the anti-cancer activity of corydamine is of great value in the development of novel anti-cancer drugs. In this study, synthesis and anti-cancer activity evaluation of corydamine were completed. The research in vitro confirmed corydamine suppressed cell proliferation and metastasis, arrested cell cycle at G1/G0 phase, triggered mitochondrial pathway apoptosis through inhibiting the activation of PI3K/AKT/mTOR pathway. Studies in vivo on LM9 xenograft nude mice demonstrated that corydamine therapy markedly inhibited tumor growth. These findings revealed corydamine might be a candidate for the treatment of hepatocellular carcinoma.  相似文献   

10.
Despite a capacity for proliferation and an ability to differentiate into multiple cell types, in long‐term culture and with ageing, stem cells show a reduction in growth, display a decrease in differentiation potential, and enter senescence without evidence of transformation. The Lin28a gene encodes an RNA‐binding protein that plays a role in regulating stem cell activity, including self‐renewal and differentiation propensity. However, the effect of the Lin28a gene on cultured human osteoprecursor cells is poorly understood. In the present study, alkaline phosphatase activity, alizarin red‐positive mineralization, and calcium content, positive indicators of osteogenic differentiation, were significantly higher in cultured human periosteum‐derived cells (hPDCs) with Lin28a overexpression compared with cells without Lin28a overexpression. Lin28a overexpression by hPDCs also increased mitochondrial activity, which is essential for cellular proliferation, as suggested by a reduced presence of reactive oxygen species and significantly enhanced lactate levels and ATP production. Our results suggest that, in hPDCs, the Lin28a gene enhances osteoblastic differentiation and increases mitochondrial activity. Although Lin28a is known as a marker of undifferentiated human embryogenic stem cell, there is limited evidence regarding the influence of Lin28a on osteoblastic differentiation of cultured osteoprecursor cells. This study was to examine the impact of Lin28a on osteogenic phenotypes of human periosteum‐derived cells. Their phenotypes can be similar to those of mesenchymal stem cells. Our results suggest that the Lin28a gene enhances the osteoblastic differentiation of human periosteum‐derived cells. In addition, the Lin28a gene increases mitochondrial activity in human periosteum‐derived cells.  相似文献   

11.
Tumour necrotic factor receptor‐2 (TNFR2) has been to be cardiac‐protective and is expressed in cardiac progenitor cells. Our goal is to define the mechanism for TNFR2‐mediated cardiac stem cell activation and differentiation. By employing a protocol of in vitro cardiac stem cell (CSC) differentiation from human inducible pluripotent stem cell (hiPSC), we show that expression of TNFR2 precedes expression of CSC markers followed by expression of mature cardiomyocyte proteins. Activation of TNFR2 by a specific agonist promotes whereas inhibition of TNFR2 by neutralizing antibody diminishes hiPSC‐based CSC differentiation. Interestingly, pluripotent cell factor RNA‐binding protein Lin28 enhances TNFR2 protein expression in early CSC activation by directly binding to a conserved Lin28‐motif within the 3'UTR of Tnfr2 mRNA. Furthermore, inhibition of Lin28 blunts TNFR2 expression and TNFR2‐dependent CSC activation and differentiation. Our study demonstrates a critical role of Lin28‐TNFR2 axis in CSC activation and survival, providing a novel strategy to enhance stem cell‐based therapy for the ischaemic heart diseases.  相似文献   

12.
Lin28a has been found to enhance glucose uptake and insulin sensitivity. Lin28a alleviates cardiac dysfunction under various pathological conditions. However, the effects and underlying mechanisms of Lin28a on diabetic cardiomyopathy (DCM) are not well-understood. The aim of this study was to determine whether Lin28a protects against DCM and the potential mechanisms. Two to three days old mouse neonatal primary cardiomyocytes were randomized for treatment with adenoviruses harboring Lin28a and mammalian sterile 20-like kinase 1 (Mst1) short hairpin RNA, 48 hr before culturing in normal or high glucose medium. Cardiomyocyte apoptosis, autophagy, mitochondrial morphology, adenosine triphosphate content, and cytokine levels in the high glucose or normal conditions were observed between all groups. Either Lin28a overexpression or Mst1 knockdown alleviated mitochondrial ultrastructure impairment, decreased cytokine levels, inhibited apoptosis, and enhanced autophagy in primary neonatal mouse cardiomyocytes treated with high glucose. Importantly, the protective effects of Lin28a and Mst1 disappeared after treatment with 3-methyladenine, an autophagy inhibitor. Interestingly, in Mst1 knockdown cardiomyocytes, Lin28a overexpression failed to further enhance autophagy and alleviate high glucose-induced cardiomyocyte injury, which implies the protective roles of Lin28a counteracting high glucose-induced cardiomyocyte injury are dependent on Mst1 inhibition. Furthermore, co-immunoprecipitation and immunofluorescence double staining suggested that there were no direct interactions between Mst1 and Lin28a. Lin28a increased the expression of Akt, which inhibited the activation of Mst1-mediated apoptotic pathways.  相似文献   

13.
14.
New-onset diabetes mellitus has a rough correlation with pancreatic cancer (PaC), but the underlying mechanism remains unclear. This study aimed to explore the exosomal microRNAs and their potential role in PaC-induced β-cell dysfunction. The pancreatic β cells were treated with isolated exosomes from PaC cell lines, SW1990 and BxPC-3, before measuring the glucose-stimulated insulin secretion (GSIS), validating that SW1990 and BxPC-3 might disrupt GSIS of both β cell line MIN6 and primary mouse pancreatic islets. The difference in expression profiles between exosomes and exosome-free medium of PaC cell lines was further defined, revealing that miR-19a secreted by PaC cells might be an important signaling molecule in this process. Furthermore, adenylyl cyclase 1 (Adcy1) and exchange protein directly activated by cAMP 2 (Epac2) were verified as the direct targets of exogenous miR-19a, which was involved in insulin secretion. These results indicated that exosomes might be an important mediator in the pathogenesis of PaC-DM, and miR-19a might be the effector molecule. The findings shed light on the pathogenesis of PaC-DM.  相似文献   

15.

Introduction

Cholangiocarcinoma (CCA) is an aggressive disease with limited effective treatment options. The PI3K/Akt/mTOR pathway represents an attractive therapeutic target due to its frequent dysregulation in CCA. MK2206, an allosteric Akt inhibitor, has been shown to reduce cellular proliferation in other cancers. We hypothesized that MK2206 mediated inhibition of Akt would impact CCA cellular viability.

Study methods

Post treatment with MK2206 (0-2 μM), cellular viability was assessed in two human CCA cell lines—CCLP-1 and SG231—using an MTT assay. Lysates from the MK2206 treated CCA cells were then examined for apoptotic marker expression levels using Western blot analysis. Additionally, the effect on cellular proliferation of MK2206 treatment on survivin depleted cells was determined.

Results

CCLP-1 and SG231 viability was significantly reduced at MK2206 concentrations of 0.5, 1, and 2 μM by approximately 44%, 53%, and 64% (CCLP-1; p = 0.01) and 32%, 32%, and 42% (SG231; p < 0.00005) respectively. Western analysis revealed a decrease in AKTSer473, while AKTThr308 expression was unchanged. In addition, cleaved PARP as well as survivin expression increased while pro-caspase 3 and 9 levels decreased with treatment. Depletion of survivin in CCLP-1 cells resulted in apoptosis as evidenced by increased cleaved PARP. In addition, survivin siRNA further enhanced the antitumor activity of MK2206.

Conclusions

This study demonstrates that by blocking phosphorylation of Akt at serine473, CCA cellular growth is reduced. The growth suppression appears to be mediated via apoptosis. Importantly, combination of survivin siRNA transfection and MK2206 treatment significantly decreased cell viability.  相似文献   

16.
17.
Sevoflurane is a widely used anaesthetic agent, including in anaesthesia of children and infants. Recent studies indicated that the general anaesthesia might cause the cell apoptosis in the brain. This issue raises the concerns about the neuronal toxicity induced by the application of anaesthetic agents, especially in the infants and young children. In this study, we used Morris water maze, western blotting and immunohistochemistry to elucidate the role of α‐lipoic acid in the inhibition of neuronal apoptosis. We found that sevoflurane led to the long‐term cognitive impairment in the young rats. This adverse effect may be caused by the neuronal death in the hippocampal region, mediated through PI3K/Akt signalling pathway. We also showed that α‐lipoic acid offset the effect of sevoflurane on the neuronal apoptosis and cognitive dysfunction. This study elucidated the potential clinical role of α‐lipoic acid, providing a promising way in the prevention and treatment of long‐term cognitive impairment induced by sevoflurane general anesthesia. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Less information is available concerning the molecular mechanisms of cell survival after hypoxia in hepatocytes. Therefore, this study examined the effect of hypoxia on DNA synthesis and its related signal cascades in primary cultured chicken hepatocytes. Hypoxia increased [3H] thymidine incorporation, which was increased significantly after 0-24 h of hypoxic exposure. Indeed, the percentage of cell population in the S phase was increased in hypoxia condition. However, the release of LDH indicating cellular injury was not changed under hypoxic conditions. Hypoxia increased Ca2+ uptake and PKC translocation from the cytosol to the membrane fraction. Among the PKC isoforms, hypoxia stimulated the translocation of PKC alpha and epsilon. Hypoxia also phosphorylated the p38 and p44/42 mitogen-activated protein kinases (MAPKs), which were blocked by the inhibition of PKC. On the other hand, hypoxia increased Akt and mTOR phosphorylation, which was blocked in the absence of intra/extracellular Ca2+. The inhibition of PKC/MAPKs or PI3K/Akt pathway blocked the hypoxia-induced [3H] thymidine incorporation. However, hypoxia-induced Ca2+ uptake and PKC translocation was not influenced by LY 294002 or Akt inhibitor and hypoxia-induced MAPKs phosphorylation was not changed by rapamycin. In addition, LY 294002 or Akt inhibitor has no effect on the phosphorylation of MAPKs. It suggests that there is no direct interaction between the two pathways, which cooperatively mediated cell cycle progression to hypoxia in chicken hepatocytes. Hypoxia also increased the level of the cell cycle regulatory proteins [cyclin D(1), cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4] and p-RB protein but decreased the p21 and p27 expression levels, which were blocked by inhibitors of upstream signal molecules. In conclusion, short time exposure to hypoxia increases DNA synthesis in primary cultured chicken hepatocytes through cooperation of Ca2+/PKC, p38 MAPK, p44/42 MAPKs, and PI3K/Akt pathways.  相似文献   

19.
Understanding signaling pathways that regulate pancreatic β-cell function to produce, store, and release insulin, as well as pathways that control β-cell proliferation, is vital to find new treatments for diabetes mellitus. Transforming growth factor-beta (TGF-β) signaling is involved in a broad range of β-cell functions. The canonical TGF-β signaling pathway functions through intracellular smads, including smad2 and smad3, to regulate cell development, proliferation, differentiation, and function in many organs. Here, we demonstrate the role of TGF-β/smad2 signaling in regulating mature β-cell proliferation and function using β-cell-specific smad2 null mutant mice. β-cell-specific smad2-deficient mice exhibited improved glucose clearance as demonstrated by glucose tolerance testing, enhanced in vivo and ex vivo glucose-stimulated insulin secretion, and increased β-cell mass and proliferation. Furthermore, when these mice were fed a high-fat diet to induce hyperglycemia, they again showed improved glucose tolerance, insulin secretion, and insulin sensitivity. In addition, ex vivo analysis of smad2-deficient islets showed that they displayed increased glucose-stimulated insulin secretion and upregulation of genes involved in insulin synthesis and insulin secretion. Thus, we conclude that smad2 could represent an attractive therapeutic target for type 2 diabetes mellitus.  相似文献   

20.
We report here the discovery of a novel series of selective mTOR kinase inhibitors. A series of imidazo[4,5-b]pyrazin-2-ones, represented by screening hit 1, was developed into lead compounds with excellent mTOR potency and exquisite kinase selectivity. Potent compounds from this series show >1000-fold selectivity over the related PI3Kα lipid kinase. Further, compounds such as 2 achieve mTOR pathway inhibition, blocking both mTORC1 and mTORC2 signaling, in PC3 cancer cells as measured by inhibition of pS6 and pAkt (S473).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号