首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.  相似文献   

2.
《Autophagy》2013,9(11):1921-1936
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.  相似文献   

3.
The induction of cell death by radiation has largely been attributed to pro-apoptotic mechanisms. Autophagy, an alternative form of programmed cell death, has recently been shown to contribute significantly to anti-neoplastic effects of radiation therapy. In light of this, ER stress has been shown to trigger both apoptosis and autophagy, and act as an important mediator linking the two programmed cell death pathways. Recent data reveal that ER stress leads to activation of autophagosome formation with LC3 conversion via either PERK-eIF2α pathway or IRE1-JNK pathway. In this focused review, we summarize the main molecular mediators that control cellular “switches” between apoptosis and autophagy pathways by utilizing radiation therapy as a model.  相似文献   

4.
We recently reported that necrotic renal proximal tubular cells (RPTC) can induce the death of renal interstitial fibroblasts. Since autophagy plays either cytoprotective or cytodestructive roles depending on the experimental condition, the present study was carried out to investigate whether necrotic RPTC would induce autophagy of renal interstitial fibroblasts and, if so, whether autophagy would contribute to cell death or exert a protective effect. Exposure of necrotic RPTC supernatant (RPTC-Sup) induced autophagy in renal interstitial fibroblast cells (NRK-49F) in a time- and dose-dependent manner, and its induction was earlier than caspase-3 activation. Inhibition of autophagy with 3-methyladenine (3-MA) or knockdown of Beclin-1, a molecule involved in the initiation of autophagosome formation, with small interference RNA (siRNA) significantly enhanced necrotic RPTC-Sup-induced cell death. Necrotic RPTC-Sup induced phosphorylation of extracellular signal-regulated kinases (ERK1/2), p38, c-Jun NH(2)-terminal kinases (JNKs), and AKT. Treatment with an ERK1/2 pathway inhibitor, but not with specific inhibitors for p38, JNKs, or AKT pathways, blocked NRK-49F autophagy and cell death upon exposure to necrotic RPTC-Sup. Furthermore, knockdown of MEK1 with siRNA also reduced autophagy along with cell death in NRK-49F exposed to necrotic RPTC-Sup. In contrast, overexpression of MEK1/2 increased RPTC-Sup-induced fibroblast cell death without enhancing autophagy. Collectively, this study demonstrates that necrotic RPTC induce both autophagy and cell death and that autophagy plays a cytoprotective or prosurvival role in renal fibroblasts. Furthermore, necrotic RPTC-induced autophagy and cell death in renal fibroblasts is mediated by the activation of the MEK1-ERK1/2 signaling pathway.  相似文献   

5.
Chen Y  Gibson SB 《Autophagy》2008,4(2):246-248
Autophagy is a conserved lysosomal degradation pathway that has been extensively studied in recent years. However, the mechanism of autophagy induction is still not clear. Mitochondria are important regulators of both apoptosis and autophagy. One of the triggers for mitochondrial mediated apoptosis is the production of reactive oxygen species (ROS). Recently, several studies have indicated that ROS may be also involved in induction of autophagy. ROS are molecules or ions that are formed by the incomplete one-electron reduction of oxygen, including superoxide (O2 (*-)), hydrogen peroxide (H2O2), hydroxyl radical ((*)OH), nitric oxide (NO), and peroxynitrite (ONOO-). Our recent studies provide strong evidences for the involvement of mitochondrially-generated ROS production in the induction of autophagy as determined by the formation of autophagosomes and autolysosomes. This was accomplished through treatment with mitochondrial toxins that inhibit the electron transport chain in transformed and cancer cells. In addition, we have determined that H2O2 and 2-methoxyestradiol (inhibitor of superoxide dismutases and electron transport chain) induce autophagy leading to cell death. In contrast, normal astrocytes fail to induce autophagy following treatment with mitochondrial toxins. Herein, we discuss several important points of our studies and provide a model for mitochondrially-induced autophagic cell death mediated by ROS.  相似文献   

6.
Autophagy and apoptosis are both highly regulated biological processes that play essential roles in tissue homeostasis, development and diseases. Autophagy is also described as a mechanism of death pathways, however, the precise mechanism of how autophagy links to cell death remains to be fully understood. Beclin 1 is a dual regulator for both autophagy and apoptosis. In this study we found that Beclin 1 was a substrate of caspase-3 with two cleavage sites at positions 124 and 149, respectively. Furthermore, the autophagosome formation occurred, followed by the appearance of morphological hallmarks of apoptosis after staurosporine treatment. The cleavage products of Beclin 1 reduced autophagy and promoted apoptosis in HeLa cells and the cells in which Beclin 1 was stably knocked down by specific shRNA. In addition, the cleavage of Beclin 1 resulted in abrogating the interaction between Bcl-2 with Beclin 1, which could be blocked by z-VAD-fmk. Thus, our results suggest that the cleavage of Beclin 1 by caspase-3 may contribute to inactivate autophagy leading towards augmented apoptosis.  相似文献   

7.
《Autophagy》2013,9(5):669-679
Apoptosis (programmed cell death type I) and autophagy (type II) are crucial mechanisms regulating cell death and homeostasis. The Bcl-2 proto-oncogene is overexpressed in 50-70% of breast cancers, potentially leading to resistance to chemotherapy, radiation and hormone therapy induced apoptosis. In this study, we investigated the role of Bcl-2 in autophagy in breast cancer cells. Silencing of Bcl-2 by siRNA in MCF-7 breast cancer cells downregulated Bcl-2 protein levels (>85%) and led to inhibition of cell growth (71%) colony formation (79%), and cell death (up to 55%) by autophagy but not apoptosis. Induction of autophagy was demonstrated by acridine orange staining, electron microscopy and an accumulation of GFP-LC3-II in preautopghagosomal and autophagosomal membranes in MCF-7 cells transfected with GFP-LC-3(GFP-ATG8). Silencing of Bcl-2 by siRNA also led to induction of LC-3-II, a hallmark of autophagy, ATG5 and Beclin-1 autophagy promoting proteins. Knockdown of ATG5 significantly inhibited Bcl-2 siRNA-induced LC3-II expression and the number of GFP-LC3-II-labeled autophagosome (punctuated pattern) positive cells and autophagic cell death (p  相似文献   

8.
DAP-kinase (DAPK) is a Ca2+-calmodulin regulated kinase with various, diverse cellular activities, including regulation of apoptosis and caspase-independent death programs, cytoskeletal dynamics, and immune functions. Recently, DAPK has also been shown to be a critical regulator of autophagy, a catabolic process whereby the cell consumes cytoplasmic contents and organelles within specialized vesicles, called autophagosomes. Here we present the latest findings demonstrating how DAPK modulates autophagy. DAPK positively contributes to the induction stage of autophagosome nucleation by modulating the Vps34 class III phosphatidyl inositol 3-kinase complex by two independent mechanisms. The first involves a kinase cascade in which DAPK phosphorylates protein kinase D, which then phosphorylates and activates Vps34. In the second mechanism, DAPK directly phosphorylates Beclin 1, a necessary component of the Vps34 complex, thereby releasing it from its inhibitor, Bcl-2. In addition to these established pathways, we will discuss additional connections between DAPK and autophagy and potential mechanisms that still remain to be fully validated. These include myosin-dependent trafficking of Atg9-containing vesicles to the sites of autophagosome formation, membrane fusion events that contribute to expansion of the autophagosome membrane and maturation through the endocytic pathway, and trafficking to the lysosome on microtubules. Finally, we discuss how DAPK's participation in the autophagic process may be related to its function as a tumor suppressor protein, and its role in neurodegenerative diseases.  相似文献   

9.
The molecular interactions between Arabidopsis and the pathogenic powdery mildew Golovinomyces cichoracearum were studied by characterizing a disease-resistant Arabidopsis mutant atg2-2. The atg2-2 mutant showed enhanced resistance to powdery mildew and dramatic mildew-induced cell death as well as early senescence phenotypes in the absence of pathogens. Defense-related genes were constitutively activated in atg2-2. In atg2-2 mutants, spontaneous cell death, early senescence and disease resistance required the salicylic acid (SA) pathway, but interestingly, mildew-induced cell death was not fully suppressed by inactivation of SA signaling. Thus, cell death could be uncoupled from disease resistance, suggesting that cell death is not sufficient for resistance to powdery mildew. ATG2 encodes autophagy-related 2, a protein known to be involved in the early steps of autophagosome biogenesis. The atg2-2 mutant exhibited typical autophagy defects in autophagosome formation. Furthermore, mutations in several other ATG genes, including ATG5, ATG7 and ATG10, exhibited similar powdery mildew resistance and mildew-induced cell death phenotypes. Taken together, our findings provide insights into the role of autophagy in cell death and disease resistance, and may indicate general links between autophagy, senescence, programmed cell death and defense responses in plants.  相似文献   

10.
Statins inhibit the proximal steps of cholesterol biosynthesis, and are linked to health benefits in various conditions, including cancer and lung disease. We have previously investigated apoptotic pathways triggered by statins in airway mesenchymal cells, and identified reduced prenylation of small GTPases as a primary effector mechanism leading to p53-mediated cell death. Here, we extend our studies of statin-induced cell death by assessing endpoints of both apoptosis and autophagy, and investigating their interplay and coincident regulation. Using primary cultured human airway smooth muscle (HASM) and human airway fibroblasts (HAF), autophagy, and autophagosome formation and flux were assessed by transmission electron microscopy, cytochemistry (lysosome number and co-localization with LC3) and immunoblotting (LC3 lipidation and Atg12-5 complex formation). Chemical inhibition of autophagy increased simvastatin-induced caspase activation and cell death. Similarly, Atg5 silencing with shRNA, thus preventing Atg5-12 complex formation, increased pro-apoptotic effects of simvastatin. Simvastatin concomitantly increased p53-dependent expression of p53 up-regulated modulator of apoptosis (PUMA), NOXA, and damage-regulated autophagy modulator (DRAM). Notably both mevalonate cascade inhibition-induced autophagy and apoptosis were p53 dependent: simvastatin increased nuclear p53 accumulation, and both cyclic pifithrin-α and p53 shRNAi partially inhibited NOXA, PUMA expression and caspase-3/7 cleavage (apoptosis) and DRAM expression, Atg5-12 complex formation, LC3 lipidation, and autophagosome formation (autophagy). Furthermore, the autophagy response is induced rapidly, significantly delaying apoptosis, suggesting the existence of a temporally coordinated p53 regulation network. These findings are relevant for the development of statin-based therapeutic approaches in obstructive airway disease.  相似文献   

11.
The bacterial virulence factors Shiga toxins (Stxs) are expressed by Shigella dysenteriae serotype 1 and certain Escherichia coli strains. Stxs are protein synthesis inhibitors and induce apoptosis in many cell types. Stxs induce apoptosis via prolonged endoplasmic reticulum stress signalling to activate both extrinsic and intrinsic pathways in human myeloid cells. Studies have shown that autophagy, a lysosome-dependent catabolic process, may be associated with activation of pro-survival or death processes. It is currently unknown if autophagy contributes to apoptosis or protects cells from Stxs. To study cellular responses to Stxs, we intoxicated toxin-sensitive cells (THP-1 and HK-2 cells), and toxin-resistant cells (primary human monocyte-derived macrophages) and examined toxin intracellular trafficking and autophagosome formation. Stxs translocated to different cell compartments in toxin-resistant versus toxin-sensitive cells. Confocal microscopy revealed autophagosome formation in both toxin-resistant and toxin-sensitive cells. Proteolytic cleavage of Atg5 and Beclin-1 plays pivotal roles in switching non-cytotoxic autophagy to cell death signalling. We detected cleaved forms of Atg5 and Beclin-1 in Stx-treated toxin-sensitive cells, while cleaved caspases, calpains, Atg5 and Beclin-1 were not detected in toxin-resistant primary human monocytes and macrophages. These findings suggest that toxin sensitivity correlates with caspase and calpain activation, leading to Atg5 and Beclin-1 cleavage.  相似文献   

12.
Regulation of macroautophagy by mTOR and Beclin 1 complexes   总被引:2,自引:0,他引:2  
Macroautophagy or autophagy is a vacuolar degradative pathway terminating in the lysosomal compartment after forming a cytoplasmic vacuole or autophagosome that engulfs macromolecules and organelles. The original discovery that ATG (AuTophaGy related) genes in yeast are involved in the formation of autophagosomes has greatly increased our knowledge of the molecular basis of autophagy, and its role in cell function that extends far beyond non-selective degradation. The regulation of autophagy by signaling pathways overlaps the control of cell growth, proliferation, cell survival and death. The evolutionarily conserved TOR (Target of Rapamycin) kinase complex 1 plays an important role upstream of the Atg1 complex in the control of autophagy by growth factors, nutrients, calcium signaling and in response to stress situations, including hypoxia, oxidative stress and low energy. The Beclin 1 (Atg6) complex, which is involved in the initial step of autophagosome formation, is directly targeted by signaling pathways. Taken together, these data suggest that multiple signaling checkpoints are involved in regulating autophagosome formation.  相似文献   

13.
Macroautophagy/autophagy is a highly conserved process for degrading cytoplasmic contents, determines cell survival or death, and regulates the cellular homeostasis. Besides ATG proteins, numerous regulators together with various post-translational modifications (PTMs) are also involved in autophagy. In this work, we collected 4,237 experimentally identified proteins regulated in autophagy and cell death pathways from the literature. Then we computationally identified potential orthologs of known proteins, and developed a comprehensive database of The Autophagy, Necrosis, ApopTosis OrchestratorS (THANATOS, http://thanatos.biocuckoo.org), containing 191,543 proteins potentially associated with autophagy and cell death pathways in 164 eukaryotes. We performed an evolutionary analysis of ATG genes, and observed that ATGs required for the autophagosome formation are highly conserved across eukaryotes. Further analyses revealed that known cancer genes and drug targets were overrepresented in human autophagy proteins, which were significantly associated in a number of signaling pathways and human diseases. By reconstructing a human kinase-substrate phosphorylation network for ATG proteins, our results confirmed that phosphorylation play a critical role in regulating autophagy. In total, we mapped 65,015 known sites of 11 types of PTMs to collected proteins, and revealed that all types of PTM substrates were enriched in human autophagy. In addition, we observed multiple types of PTM regulators such as protein kinases and ubiquitin E3 ligases or adaptors were significantly associated with human autophagy, and again the results emphasized the importance of PTM regulations in autophagy. We anticipated THANATOS can be a useful resource for further studies.  相似文献   

14.
To achieve malignancy, cancer cells convert numerous signaling pathways, with evasion from cell death being a characteristic hallmark. The cell death machinery represents an anti-cancer target demanding constant identification of tumor-specific signaling molecules. Control of mitochondrial radical formation, particularly superoxide interconnects cell death signals with appropriate mechanistic execution. Superoxide is potentially damaging, but also triggers mitochondrial cytochrome c release. While paraoxonase (PON) enzymes are known to protect against cardiovascular diseases, recent data revealed that PON2 attenuated mitochondrial radical formation and execution of cell death. Another family member, PON3, is poorly investigated. Using various cell culture systems and knockout mice, here we addressed its potential role in cancer. PON3 is found overexpressed in various human tumors and diminishes mitochondrial superoxide formation. It directly interacts with coenzyme Q10 and presumably acts by sequestering ubisemiquinone, leading to enhanced cell death resistance. Localized to the endoplasmic reticulum (ER) and mitochondria, PON3 abrogates apoptosis in response to DNA damage or intrinsic but not extrinsic stimulation. Moreover, PON3 impaired ER stress-induced apoptotic MAPK signaling and CHOP induction. Therefore, our study reveals the mechanism underlying PON3's anti-oxidative effect and demonstrates a previously unanticipated function in tumor cell development. We suggest PONs represent a novel class of enzymes crucially controlling mitochondrial radical generation and cell death.  相似文献   

15.
Autophagy is associated with luteal cells death during regression of the corpus luteum (CL) in some species. However, the involvement of autophagy or the association between autophagy and apoptosis in CL regression are largely unknown. Therefore, we investigated the role of autophagy in CL regression and its association with apoptosis. Ovaries were obtained from pseudopregnant rats at Days 2 (early), 7 (mid-), and 14 and 20 (late-luteal stage) of the pseudopregnancy; autophagy-associated protein (microtuble-associated protein light chain 3 [LC3]) was immunolocalized and its expression level was measured. Luteal cell apoptosis was evaluated by measuring cleaved caspase 3 expression. LC3 expression increased slightly from early to mid-luteal stage, with maximal levels detected at the late-luteal stage in steroidogenic luteal cells. The expression level of the membrane form of LC3 (LC3-II) also increased during luteal stage progression, and reached a maximum at the end point of late-luteal stage (Day 20). This pattern coincided with cleaved caspase 3 expression. Furthermore, LC3-II expression increased, as did levels of cleaved caspase 3 in luteal cells cultured with prostaglandin F(2alpha) known to induce CL regression. These findings suggest that luteal cell autophagy is directly involved in CL regression, and is correlated with increased apoptosis. In addition, autophagic processes were inhibited using 3-methyladenine or bafilomycin A1 to evaluate the role of autophagy in apoptosis induction. Inhibition of autophagosome degradation by fusion with lysosomes (bafilomycin A1) increased apoptosis and cell death. Furthermore, inhibition of autophagosome formation (3-methyladenine) decreased apoptosis and cell death, suggesting that the accumulation of autophagosomes induces luteal cell apoptosis. In conclusion, these results indicate that autophagy is involved in rat luteal cell death through apoptosis, and is most prominent during CL regression.  相似文献   

16.
Apoptosis (programmed cell death type I) and autophagy (type II) are crucial mechanisms regulating cell death and homeostasis. The Bcl-2 proto-oncogene is overexpressed in 50-70% of breast cancers, potentially leading to resistance to chemotherapy, radiation and hormone therapy-induced apoptosis. Here, we investigated the role of Bcl-2 in autophagy in breast cancer cells. Silencing of Bcl-2 by siRNA in MCF-7 breast cancer cells downregulated Bcl-2 protein levels (>85%) and led to inhibition of cell growth (71%) colony formation (79%), and cell death (up to 55%) by autophagy but not apoptosis. Induction of autophagy was demonstrated by acridine orange staining, electron microscopy and an accumulation of GFP-LC3-II in autophagosomal membranes in MCF-7 cells transfected with GFP-LC-3(GFP-ATG8). Silencing of Bcl-2 by siRNA also led to induction of LC-3-II, a hallmark of autophagy, ATG5 and Beclin-1 autophagy promoting proteins. Knockdown of ATG5 significantly inhibited Bcl-2 siRNA-induced LC3-II expression, the number of GFP-LC3-II-labeled autophagosome positive cells and autophagic cell death (p < 0.05). Furthermore, doxorubicin at a high dose (IC(95), 1 microM) induced apoptosis but at a low dose (IC(50), 0.07 microM) induced only autophagy and Beclin-1 expression. When combined with Bcl-2 siRNA, doxorubicin (IC(50)) enhanced autophagy as indicated by the increased number cells with GFP-LC3-II-stained autophagosomes (punctuated pattern positive). These results provided the first evidence that targeted silencing of Bcl-2 induces autophagic cell death in MCF-7 breast cancer cells and that Bcl-2 siRNA may be used as a therapeutic strategy alone or in combination with chemotherapy in breast cancer cells that overexpress Bcl-2.  相似文献   

17.
Wu YT  Tan HL  Huang Q  Kim YS  Pan N  Ong WY  Liu ZG  Ong CN  Shen HM 《Autophagy》2008,4(4):457-466
The aim of this study is to examine the role of autophagy in cell death by using a well-established system in which zVAD, a pan-caspase inhibitor, induces necrotic cell death in L929 murine fibrosarcoma cells. First, we observed the presence of autophagic hallmarks, including an increased number of autophagosomes and the accumulation of LC3-II in zVAD-treated L929 cells. Since the presence of such autophagic hallmarks could be the result of either increased flux of autophagy or blockage of autophagosome maturation (lysosomal fusion and degradation), we next tested the effect of rapamycin, a specific inhibitor for mTOR, and chloroquine, a lysosomal enzyme inhibitor, on zVAD-induced cell death. To our surprise, rapamycin, known to be an autophagy inducer, blocked zVAD-induced cell death, whereas chloroquine greatly sensitized zVAD-induced cell death in L929 cells. Moreover, similar results with rapamycin and chloroquine were also observed in U937 cells when challenged with zVAD. Consistently, induction of autophagy by serum starvation offered significant protection against zVAD-induced cell death, whereas knockdown of Atg5, Atg7 or Beclin 1 markedly sensitized zVAD-induced cell death in L929 cells. More importantly, Atg genes knockdown completely abolished the protective effect of serum starvation on zVAD-induced cell death. Finally, we demonstrated that zVAD was able to inhibit lysosomal enzyme cathepsin B activity, and subsequently blocked autophagosome maturation. Taken together, in contrast to the previous conception that zVAD induces autophagic cell death, here we provide compelling evidence suggesting that autophagy serves as a cell survival mechanism and suppression of autophagy via inhibition of lysosomal function contributes to zVAD-induced necrotic cell death.  相似文献   

18.
Autophagy plays an important role in cellular quality control and is responsible for removing protein aggregates and dysfunctional organelles. Bnip3 is an atypical BH3-only protein that is known to cause mitochondrial dysfunction and cell death. Interestingly, Bnip3 can also protect against cell death by inducing mitochondrial autophagy. The mechanism for this process, however, remains poorly understood. Bnip3 contains a C-terminal transmembrane domain that is essential for homodimerization and proapoptotic function. In this study, we show that homodimerization of Bnip3 is also a requirement for induction of autophagy. Several Bnip3 mutants that do not interfere with its mitochondrial localization but disrupt homodimerization failed to induce autophagy in cells. In addition, we discovered that endogenous Bnip3 is localized to both mitochondria and the endoplasmic reticulum (ER). To investigate the effects of Bnip3 at mitochondria or the ER on autophagy, Bnip3 was targeted specifically to each organelle by substituting the Bnip3 transmembrane domain with that of Acta or cytochrome b(5). We found that Bnip3 enhanced autophagy in cells from both sites. We also discovered that Bnip3 induced removal of both ER (ERphagy) and mitochondria (mitophagy) via autophagy. The clearance of these organelles was mediated in part via binding of Bnip3 to LC3 on the autophagosome. Although ablation of the Bnip3-LC3 interaction by mutating the LC3 binding site did not impair the prodeath activity of Bnip3, it significantly reduced both mitophagy and ERphagy. Our data indicate that Bnip3 regulates the apoptotic balance as an autophagy receptor that induces removal of both mitochondria and ER.  相似文献   

19.
《Autophagy》2013,9(2):299-300
Autophagy is a degradative mechanism involved in cell protection against invading pathogens. Although the autophagic process is well characterized, the molecular pathways leading to its activation upon pathogen binding remain poorly understood. Our recent work demonstrates that the cell surface pathogen receptor CD46 induces autophagy upon pathogen recognition. The molecular pathway linking CD46 to the autophagosome machinery relies on the scaffold protein GOPC and on the autophagosome formation complex Beclin 1/VPS34. The CD46-dependent autophagy is critical to an early control of infection.  相似文献   

20.
Mitophagy is a highly specialized process to remove dysfunctional or superfluous mitochondria through the macroautophagy/autophagy pathway, aimed at protecting cells from the damage of disordered mitochondrial metabolism and apoptosis induction. PINK1, a neuroprotective protein mutated in autosomal recessive Parkinson disease, has been implicated in the activation of mitophagy by selectively accumulating on depolarized mitochondria, and promoting PARK2/Parkin translocation to them. While these steps have been characterized in depth, less is known about the process and site of autophagosome formation upon mitophagic stimuli. A previous study reported that, in starvation-induced autophagy, the proautophagic protein BECN1/Beclin1 (which we previously showed to interact with PINK1) relocalizes at specific regions of contact between the endoplasmic reticulum (ER) and mitochondria called mitochondria-associated membranes (MAM), from which the autophagosome originates. Here we show that, following mitophagic stimuli, autophagosomes also form at MAM; moreover, endogenous PINK1 and BECN1 were both found to relocalize at MAM, where they promoted the enhancement of ER-mitochondria contact sites and the formation of omegasomes, that represent autophagosome precursors. PARK2 was also enhanced at MAM following mitophagy induction. However, PINK1 silencing impaired BECN1 enrichment at MAM independently of PARK2, suggesting a novel role for PINK1 in regulating mitophagy. MAM have been recently implicated in many key cellular events. In this light, the observed prevalent localization of PINK1 at MAM may well explain other neuroprotective activities of this protein, such as modulation of mitochondrial calcium levels, mitochondrial dynamics, and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号