首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, inter- and intraspecific genetic diversity within the marine harmful dinoflagellate genus Coolia Meunier was evaluated using isolates obtained from the tropics to subtropics in both Pacific and Atlantic Ocean basins. The aim was to assess the phylogeographic history of the genus and to clarify the validity of established species including Coolia malayensis. Phylogenetic analysis of the D1-D2 LSU rDNA sequences identified six major lineages (L1–L6) corresponding to the morphospecies Coolia malayensis (L1), C. monotis (L2), C. santacroce (L3), C. palmyrensis (L4), C. tropicalis (L5), and C. canariensis (L6). A median joining network (MJN) of C. malayensis ITS2 rDNA sequences revealed a total of 16 haplotypes; however, no spatial genetic differentiation among populations was observed. These MJN results in conjunction with CBC analysis, rDNA phylogenies and geographical distribution analyses confirm C. malayensis as a distinct species which is globally distributed in the tropical to warm-temperate regions. A molecular clock analysis using ITS2 rDNA revealed the evolutionary history of Coolia dated back to the Mesozoic, and supports the hypothesis that historical vicariant events in the early Cenozoic drove the allopatric differentiation of C. malayensis and C. monotis.  相似文献   

2.
The dinoflagellate genus Coolia, which contains potentially toxic species, is an important component of epiphytic assemblages in marine ecosystems. The morphology of C. malayensis has been illustrated from strains isolated in Asia and Oceania. In this study, strains of C. malayensis isolated from the Caribbean Sea in Puerto Rico, and for the first time from the South Atlantic Ocean in Brazil, were investigated by light, epifluorescence and scanning electron microscopies. No significant morphological differences between these new strains and other geographically distant strains of C. malayensis were observed. In the LSU rDNA phylogeny, the C. malayensis sequences from Brazil and Puerto Rico branched within the clade of strains from Oceania and Asia. The recently described species C. santacroce branched as a sister group of C. monotis, and C. palmyrensis was basal to the combined group of C. monotis/C. malayensis/C. santacroce. A tentative undescribed species from Florida and New Zealand branched as a sister group of C. malayensis. Our results confirm that C. malayensis showed a cosmopolitan distribution in tropical to subtropical waters, while the type species C. monotis remains endemic for the Mediterranean Sea and the temperate North Atlantic.  相似文献   

3.
Eleven yeast strains representing two hitherto undescribed species were isolated from different kinds of meat samples in Hungary and one from the sediment of a tropical freshwater river in Southeastern Brazil. The analysis of the sequences of their large subunit rRNA gene D1/D2 domain and the internal transcribed spacer (ITS) regions placed the two new species in the Yarrowia clade. Some of the seven strains representing the first new species can mate and give rise to asci and form ascospores embedded in capsular material, which qualifies it as the third teleomorph species of the Yarrowia clade. The name Yarrowia porcina sp. nov. (type strain: NCAIM Y.02100T = CBS 12935T = NRRL Y-63669T, allotype strain UFMG-RD131A = CBS 12932A) is proposed for this new yeast species, which, based on physiological characters, is indistinguishable from Yarrowia lipolytica and some other species of the genus. Considerable intraspecific variability was detected among the sequences of the large subunit rRNA gene D1/D2 domains of the seven strains. The variability among the D1/D2 sequences exceeded the divergence observed among the ITS sequences and in some cases more than 1 % substitution among the D1/D2 sequences was detected. The conspecificity of these strains was supported by the low (0–3 substitutions) sequence divergence among their ITS sequences, the result of a parsimony network analysis utilizing the concatenated ITS and D1/D2 sequences and also by the fingerprint patterns generated by microsatellite primed PCR. No ascospore formation was observed in the group of the other five strains representing the second new species. These strains shared identical D1/D2 and ITS sequences. Yarrowia bubula f.a., sp. nov. (type strain: NCAIM Y.01998T = CBS 12934T = NRRL Y-63668T) is proposed to accommodate these strains.  相似文献   

4.
Three new species of Candida and a new species of Trigonopsis are described based on their recognition from phylogenetic analysis of gene sequences from large subunit ribosomal RNA, ITS1/ITS2 rRNA, mitochondrial small subunit rRNA and cytochrome oxidase II. Candida infanticola sp. nov. (type strain NRRL Y-17858, CBS 7922) was isolated from the ear of an infant in Germany and is closely related to Candida sorbophila. Candida polysorbophila sp. nov. (type strain NRRL Y-27161, CBS 7317) is a member of the Zygoascus clade and was isolated in South Africa as a contaminant from an emulsion of white oil and polysorbate. Candida transvaalensis sp. nov. (type strain NRRL Y-27140, CBS 6663) was obtained from forest litter, the Transvaal, South Africa, and forms an isolated clade with Candida santjacobensis. Trigonopsis californica sp. nov. (type strain NRRL Y-27307, CBS 10351) represents a contaminant from wine in California, and forms a well-supported clade with Trigonopsis cantarellii, Trigonopsis variabilis and Trigonopsis vinaria.  相似文献   

5.
Strains representing a novel ascomycetous yeast species, Candida sanyaensis, were isolated from soil samples collected on Hainan Island and Taiwan Island in China. Analysis of the D1/D2 domains of the large subunit (LUS) rRNA gene and internal transcribed spacer (ITS) regions of these strains showed that this species was related to Candida tropicalis and Candida sojae, their closest relatives. C. sanyaensis differed by three substitutions and one gap from C. tropicalis, and by four substitutions and one gap from C. sojae, in the D1/D2 domain sequences. However, the ITS sequences of C. sanyaensis were quite divergent from the latter two species, showing that it is a genetically separate species. The novel strains were also found to have very similar PCR-fingerprinting profiles which were quite distinct from those of C. tropicalis and C. sojae strains. The type strain of C. sanyaensis is HN-26T (= CICC 1979T = CBS 12637T).  相似文献   

6.
7.
Three strains, YP416T, YP421T, and Y422, were isolated from soil samples in Pocheon City, Gyeonggi province, South Korea. The strains belong to two novel yeast species in the genus Mrakia. Molecular phylogenetic analysis showed that the strain YP416T was closely related to Mrakia niccombsii. Still, it differed by 9 nucleotide substitutions with no gap (1.51%) in the D1/D2 domain of the LSU rRNA gene and 14 nucleotide substitutions with 7 gaps (2.36%) in the ITS region. The strain YP421T differed from the type strain of the most closely related species, Mrakia aquatica, by 5 nucleotide substitutions with no gap (0.81%) in the D1/D2 domain of the LSU rRNA gene and 9 nucleotide substitutions with one gap (1.43%) in the ITS region. The names Mrakia terrae sp. nov. and Mrakia soli sp. nov. are proposed, with type strains YP416T (KCTC 27886T) and YP421T (KCTC 27890T), respectively. MycoBank numbers of the strains YP416T and YP421T are MB 836844 and MB 836847, respectively.  相似文献   

8.
Three strains representing one novel yeast species were isolated from the phylloplanes of the vetiver grasses (DMKU-LV90 and DMKU-LV99T) and sugarcane (DMKU-SP260) collected in Thailand by leaf washing followed by a plating technique. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics and the sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer region (ITS), the three strains were found to represent a single novel anamorphic ustilaginomycetous yeast species in the genus Pseudozyma. The name Pseudozyma vetiver sp. nov. is proposed for this novel species. The type strain is DMKU-LV99T (BCC 61021 = CBS 12824). The novel species showed phylogenetic relationships to the other members of the genus Pseudozyma and to teleomorphic fungal genera, namely Ustilago, Sporisorium and Anomalomyces in Ustilaginaceae, Ustilaginales. The three strains showed identical sequences both in the D1/D2 and ITS regions. The Pseudozyma species closest to the novel species in terms of pairwise sequence similarity in the D1/D2 region was Pseudozyma pruni but with 2.3 % nucleotide substitutions (14 nucleotide substitutions and no gaps out of 606 nt). The novel species and P. pruni differed by 10.9 % nucleotide substitutions (75 nucleotide substitutions and 31 gaps out of 691 nt) in the ITS region. The phylogenetic analysis based on the combined sequences of the ITS region and the D1/D2 region of the LSU rRNA gene showed that the novel species was found to be most closely related to Pseudozyma fusiformata but with 2.9 % nucleotide substitutions in the D1/D2 region and 7.4 % nucleotide substitutions in the ITS region.  相似文献   

9.
A total of 515 yeast strains were isolated from the nasal smears of Queensland koalas and their breeding environments in Japanese zoological parks between 2005 and 2012. The most frequent species in the basidiomycetous yeast biota isolated from koala nasal passages was Cryptococcus neoformans, followed by Rhodotorula minuta. R. minuta was the most frequent species in the breeding environments, while C. neoformans was rare. Seven strains representing two novel yeast species were identified. Analyses of the 26S rDNA (LSU) D1/D2 domain and nuclear ribosomal DNA internal transcribed spacer region sequences indicated that these strains represent new species with close phylogenetic relationships to Cryptococcus and Rhodotorula. A sexual state was not found for either of these two novel yeasts. Key phenotypic characters confirmed that these strains could be placed in Cryptococcus and Rhodotorula. The names Cryptococcus lacticolor sp. nov. (type strain TIMM 10013T = JCM 15449T = CBS 10915T = DSM 21093T, DDBJ/EMBL/Genbank Accession No.; AB375774 (ITS) and AB375775 (26S rDNA D1/D2 region), MycoBank ID; MB 802688, Fungal Barcoding Database ID; 3174), and Rhodotorula oligophaga sp. nov. (type strain TIMM 10017T = JCM 18398T = CBS 12623T = DSM 25814T, DDBJ/EMBL/Genbank Accession No.; AB702967 (ITS) and AB702967 (26S rDNA D1/D2 region), MycoBank ID; MB 802689, Fungal Barcoding Database ID; 3175) are proposed for these new species.  相似文献   

10.
Three strains (KM03T, KM13 T and KM15) representing two novel methylotrophic yeast species were isolated from the external surface of plant leaves, which were collected from Kanchanaburi province, Thailand, by three-consecutive enrichments in methanol broth. Strain KM03T was isolated from phylloplane of a mango tree (Mangifera indica) and two strains, KM13T and KM15, were obtained from phylloplane of different wine grapes (Vitis vinifera). The sequences of the D1/D2 region of the large subunit (LSU) rRNA gene of the two strains (KM13T and KM15) were identical and differed markedly from that of strain KM03T. In terms of pairwise sequence similarity of the D1/D2 region the closest species to the strains KM13T and KM15 were Candida suzukii (CBS 9253T) and Candida nitratophila (CBS 2027T) but with 2.1 % nucleotide substitutions. Strain KM03T differed from Ogataea wickerhamii (CBS 4307T), its closest relative, by 2.3 % nucleotide substitutions. Phylogenetic analysis based on the D1/D2 sequences placed the three strains in the Ogataea clade. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, the sequence analyses of the D1/D2 and the internal transcribed spacer (ITS) regions of the nuclear ribosomal RNA gene (nrRNA) operon, the three strains represent two novel Ogataea species although formation of ascospores was not observed. Ogataea kanchanaburiensis sp. nov. is proposed for strain KM03T (=BCC 47626T = NBRC 108603T = CBS 12673T). Two strains, KM13T and KM15, were assigned to Ogataea wangdongensis sp. nov. (type strain KM13T = BCC 42664T = NBRC 107778T = CBS 12674T). GenBank/EMBL/DDBJ accession numbers for the sequences of the D1/D2 and the ITS regions of O. kanchanaburiensis KM03T are AB734090 and AB734093, respectively, of O. wangdongensis KM13T are AB734091 and AB734094, respectively, and of O. wangdongensis KM15 are AB734092 and AB734095, respectively.  相似文献   

11.
The genus Ostreopsis includes several toxic species that can develop blooms in benthic ecosystems, with potential harmful consequences for human health and marine invertebrates. Despite of this, little is known about the allelopathic interactions between these organisms and other co-occurring microalgae that exploit similar spatial and nutrient resources in benthic ecosystems. The aim of this study was to follow these interactions in cultures of two Ostreopsis ribotypes with different toxin profiles (O. cf. ovata contained ovatoxins-a, b, c and e, while only ovatoxin-d was found in O .sp. Lanzarote-type”), mixed with species of three benthic dinoflagellate genera (Coolia, Prorocentrum and Gambierdiscus), isolated from the same area (North East Atlantic, Canary Islands). In a first experiment, the potential allelopathic effects on growth rates were followed, in mixed cultures of Coolia monotis (a non toxic species) exposed to the clarified medium and to cells of O. sp.Lanzarote-type” and O. cf. ovata. Growth delayed in C. monotis was observed specially in clarified medium, while the O. sp. Lanzarote-type” strain attained much lower densities in mixed cultures. In a second experiment, we examined the potential effects of clarified media from O. sp.Lanzarote-type” and O. cf. ovata on the adherence capacity in two toxic species (Prorocentrum hoffmannianum and Gambierdiscus excentricus). Contrasting effects were found: a significant increase of adherence capacity in P. hoffmannianum vs attachment decline in G. excentricus, that experienced also severe deleterious effects (cell lysis). Our results suggest the existence of weak to moderate allelopathic interactions between the studied organisms, although the outcome is dependent on the species involved.  相似文献   

12.
Three hundred and thirty-seven xylose-utilizing yeast strains were isolated from various natural samples. Among these, 68 strains produced xylitol in the range of 0.1–0.69 g xylitol/g xylose. Thirty-nine xylitol-producing strains were identified to be Candida tropicalis. Ten strains were found belonging to 14 known species in the genus Candida, Cyberlindnera, Meyerozyma, Pichia, Wickerhamomyces, Yamadazyma and Cryptococcus. Two strains were identified to be two Candida species and two strains (DMKU-XE142T and DMKU-XE332) were found to be a novel species. Strain DMKU-XE142T was isolated from tree bark and DMKU-XE332 was obtained from decaying plant leaf collected in Thailand. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics and sequence analysis of the D1/D2 region of the large subunit rRNA gene (LSU) and the internal transcribed spacer (ITS) region, the two strains were determined to represent a novel Yamadazyma species although formation of ascospores was not observed. The sequences of the D1/D2 region of the LSU rRNA gene and the ITS region of the two strains were identical but differed from Yamadazyma phyllophila, the closest species in terms of pairwise sequence similarity of the D1/D2 region, by 1.7 % nucleotide substitutions and 3.5 % nucleotide substitutions in the ITS region. The name Yamadazyma ubonensis f.a., sp. nov. is proposed (type strain is DMKU-XE142T = BCC 61020T = CBS 12859T).  相似文献   

13.
Four strains representing three novel anamorphic yeast species were isolated from the external surface of sugarcane leaves (DMKU-RK254T), corn leaves (DMKU-RK548T), bean leaves (K129) in Thailand and hengchun pencilwood leaves (TrB1-1T) in Taiwan. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, the sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene, the internal transcribed spacer (ITS) region, the actin gene (ACT1) and the elongation factor 2 gene (EF2), the four strains were determined to represent novel Yamadazyma species although formation of ascospores was not observed. Strain DMKU-RK254T was determined to be related to Candida diddensiae, Candida naeodendra and Candida kanchanaburiensis but with 1.8, 1.8 and 2.0 % nucleotide substitutions in the D1/D2 region of the LSU rRNA gene, respectively. It was assigned to Yamadazyma siamensis sp. nov. (type strain DMKU-RK254T = BCC 50730T = NBRC 108901T = CBS 12573T). The sequences of the D1/D2 region of the LSU rRNA gene, the ITS region, ACT1 gene and EF2 gene of two strains (DMKU-RK548T and K129) were identical but differed from that of strain TrB1-1T by 0.6, 1.0, 3.3 and 5.9 % nucleotide substitutions, respectively. Therefore, the two strains (DMKU-RK548T and K129) and strain TrB1-1T were assigned to be two separate species. The closest species in terms of pairwise sequences similarity of the D1/D2 region to the two novel species was Yamadazyma philogaea but with 1.1–1.7 % nucleotide substitutions. The two strains (DMKU-RK548T and K129) were assigned to Yamadazyma phyllophila sp. nov. (type strain DMKU-RK548T = BCC 50736T = NBRC 108906T = CBS 12572T) and the strain TrB1-1T was named Yamadazyma paraphyllophila sp. nov. (type strain TrB1-1T = BCRC 23030T = CCTCC AY 204005T = CBS 9928T).  相似文献   

14.
Parablastocatena tetracerae gen. et sp. nov. and Corynesporella licualae sp. nov., collected on dead branches of Tetracera asiatica and Licuala fordiana, respectively, in tropical forests of China, are described and illustrated. Parablastocatena tetracerae is the type species for a new monotypic genus in possessing macronematous conidiophores forming distinct synnemata with holoblastic conidiogenesis and euseptate, short-chained conidia ending in a paler brown rostrum, whereas C. licualae is distinguished from described species by the smaller conidia with long appendages. A key to currently accepted species of Corynesporella is provided.  相似文献   

15.
Species of the PST producing planktonic marine dinoflagellate genus Alexandrium have been intensively scrutinised, and it is therefore surprising that new taxa can still be found. Here we report a new species, Alexandrium diversaporum nov. sp., isolated from spherical cysts found at two sites in Tasmania, Australia. This species differs in its morphology from all previously reported Alexandrium species, possessing a unique combination of morphological features: the presence of 2 size classes of thecal pores on the cell surface, a medium cell size, the size and shape of the 6″, 1′, 2⁗ and Sp plates, the lack of a ventral pore, a lack of anterior and posterior connecting pores, and a lack of chain formation. We determined the relationship of the two strains to other species of Alexandrium based on an alignment of concatenated SSU-ITS1, 5.8S, ITS2 and partial LSU ribosomal RNA sequences, and found A. diversaporum to be a sister group to Alexandrium leei with high support. A. leei shares several morphological features, including the relative size and shapes of the 6″, 1′, 2⁗ and Sp plates and the fact that some strains of A. leei have two size classes of thecal pores. We examined A. diversaporum strains for saxitoxin production and found them to be non-toxic. The species lacked sequences for the domain A4 of sxtA, as has been previously found for non-saxitoxin producing species of Alexandrium.  相似文献   

16.
17.
A molecular taxonomic investigation performed on basidiomycetous yeast strains isolated from plant leaves collected in two areas of China revealed two novel species, Cryptococcus foliicola sp. nov. (type strain HS 23.3(T) = AS 2.2471(T) = CBS 9920(T)) and Cryptococcus taibaiensis sp. nov. (type strain ST 7.9(T) = AS 2.2444(T) = CBS 9919(T)), among the non ballistoconidium-forming strains producing cream-colored colonies. These new species differed markedly from closely related species in the internal transcribed spacer (ITS) and 26S rRNA D1/D2 region sequences. They clustered in a strongly supported clade represented by Cryptococcus victoriae in the Tremellales group in the phylogenetic trees drawn from ITS and D1/D2 sequences.  相似文献   

18.
Plant deaths had been observed in the sub-alpine and alpine areas of Australia. Although no detailed aetiology was established, patches of dying vegetation and progressive thinning of canopy suggested the involvement of root pathogens. Baiting of roots and associated rhizosphere soil from surveys conducted in mountainous regions New South Wales and Tasmania resulted in the isolation of eight Phytophthora species; Phytophthora cactorum, Phytophthora cryptogea, Phytophthora fallax, Phytophthora gonapodyides, Phytophthora gregata, Phytophthora pseudocryptogea, and two new species, Phytophthora cacuminis sp. nov and Phytophthora oreophila sp. nov, described here. P. cacuminis sp. nov is closely related to P. fallax, and was isolated from asymptomatic Eucalyptus coccifera and species from the family Proteaceae in Mount Field NP in Tasmania. P. oreophila sp. nov, was isolated from a disturbed alpine herbfield in Kosciuzsko National Park. The low cardinal temperature for growth of the new species suggest they are well adapted to survive under these conditions, and should be regarded as potential threats to the diverse flora of sub-alpine/alpine ecosystems. P. gregata and P. cryptogea have already been implicated in poor plant health. Tests on a range of alpine/subalpine plant species are now needed to determine their pathogenicity, host range and invasive potential.  相似文献   

19.
Three isolates belonging to the ascomycetous genus Zygotorulaspora were obtained from the fruits of Cornus officinalis and Smilax china, and flowers of Dendranthema zawadskii var. latilobum in Gongju-si, Korea. Phylogenetic Analyses of the LSU D1/D2 domain and ITS region sequences supported the recognition of two new species: Zygotorulaspora cornina sp. nov. (type strain NIBRFGC000500475 = KACC93346PPP) and Zygotorulaspora smilacis sp. nov. (type strain NIBRFGC000500476 = KACC93347PPP). The two novel species revealed no growth on D-Galactose, unlike the other six species in the genus Zygotorulaspora. They are distinguished from each other by their phylogenetic differences and phenotypic characteristics such as assimilation of xylitol, 5-keto-D-gluconate, and ethanol. All species in the genus Zygotorulaspora including the two novel species have phenotypic traits of genus Zygotorulaspora: asci are persistent, sucrose and raffinose are assimilated, and m-inositol is not required for growth, and they are mainly associated with plants.  相似文献   

20.
Biological denitrification is a significant process in nitrogen biogeochemical cycle of terrestrial geothermal environments, and Thermus species have been shown to be crucial heterotrophic denitrifier in hydrothermal system. Five Gram-stain negative, aerobic and rod-shaped thermophilic bacterial strains were isolated from hot spring sediments in Tibet, China. Phylogenetic analysis based on 16S rRNA gene and whole genome sequences indicated that these isolates should be assigned to the genus Thermus and were most closely related to Thermus caldifontis YIM 73026T, and Thermus brockianus YS38T. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the five strains and the type strains of the genus Thermus were lower than the threshold values (95% and 70%, respectively) recommended for bacterial species, which clearly distinguished the five isolates from other species of the genus Thermus and indicated that they represent independent species. Colonies are circular, convex, non-transparent. Cell growth occurred at 37–80 °C (optimum, 60–65 °C), pH 6.0–8.0 (optimum, pH 7.0) and with 0–2.0% (w/v) NaCl (optimum, 0–0.5%). Denitrification genes (narG, nirK, nirS, and norB genes) detected in their genomes indicated their potential function in nitrogen metabolism. The obtained results combined with those of morphological, physiological, and chemotaxonomic characteristics, including the menaquinones, polar lipids, and cellular fatty acids showed that the isolates are proposed as representing five novel species of the genus Thermus, which are proposed as Thermus hydrothermalis sp. nov. SYSU G00291T, Thermus neutrinimicus sp. nov. SYSU G00388T, Thermus thalpophilus sp. nov. SYSU G00506T, Thermus albus sp. nov. SYSU G00608T, Thermus altitudinis sp. nov. SYSU G00630T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号