首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The integral telomerase RNA subunit templates the synthesis of telomeric repeats. The biological accumulation of human telomerase RNA (hTR) requires hTR H/ACA domain assembly with the same proteins that assemble on other human H/ACA RNAs. Despite this shared RNP composition, hTR accumulation is particularly sensitized to disruption by disease-linked H/ACA protein variants. We show that contrary to expectation, hTR-specific sequence requirements for biological accumulation do not act at an hTR-specific step of H/ACA RNP biogenesis; instead, they enhance hTR binding to the shared, chaperone-bound scaffold of H/ACA core proteins that mediates initial RNP assembly. We recapitulate physiological H/ACA RNP assembly with a preassembled NAF1/dyskerin/NOP10/NHP2 scaffold purified from cell extract and demonstrate that distributed sequence features of the hTR 3' hairpin synergize to improve scaffold binding. Our findings reveal that the hTR H/ACA domain is distinguished from other human H/ACA RNAs not by a distinct set of RNA-protein interactions but by an increased efficiency of RNP assembly. Our findings suggest a unifying mechanism for human telomerase deficiencies associated with H/ACA protein variants.  相似文献   

3.
4.
Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs.   总被引:26,自引:3,他引:26  
The small nucleolar ribonucleoprotein particles containing H/ACA-type snoRNAs (H/ACA snoRNPs) are crucial trans-acting factors intervening in eukaryotic ribosome biogenesis. Most of these particles generate the site-specific pseudouridylation of rRNAs while a subset are required for 18S rRNA synthesis. To understand in detail how these particles carry out these functions, all of their protein components have to be characterized. For that purpose, we have affinity-purified complexes containing epitope-tagged Gar1p protein, previously shown to be part of H/ACA snoRNPs. Under the conditions used, three polypeptides of 65, 22 and 10 kDa apparent molecular weight specifically copurify with epitope-tagged Gar1p. The 22 and 10 kDa polypeptides were identified as Nhp2p and a novel protein we termed Nop10p, respectively. Both proteins are conserved, essential and present in the dense fibrillar component of the nucleolus. Nhp2p and Nop10p are specifically associated with all H/ACA snoRNAs and are essential to the function of H/ACA snoRNPs. Cells lacking Nhp2p or Nop10p are impaired in global rRNA pseudouridylation and in the A1 and A2 cleavage steps of the pre-rRNA required for the synthesis of mature 18S rRNA. These phenotypes are probably a direct consequence of the instability of H/ACA snoRNAs and Gar1p observed in cells deprived of Nhp2p or Nop10p. Our results suggest that Nhp2p and Nop10p, together with Cbf5p, constitute the core of H/ACA snoRNPs.  相似文献   

5.
6.
The human telomerase ribonucleoprotein particle (RNP) shares with box H/ACA small Cajal body (sca)RNPs and small nucleolar (sno)RNPs the proteins dyskerin, hGar1, hNhp2, and hNop10. How dyskerin, hGar1, hNhp2, and hNop10 assemble with box H/ACA scaRNAs, snoRNAs, and the RNA component of telomerase (hTR) in vivo remains unknown. In yeast, Naf1p interacts with H/ACA snoRNP proteins and may promote assembly of Cbf5p (the yeast ortholog of dyskerin) with nascent pre-snoRNAs. Here we show that the human HsQ96HR8 protein, thereafter termed hNaf1, can functionally replace endogenous Naf1p in yeast. HeLa hNaf1 associates with dyskerin and hNop10 as well as box H/ACA scaRNAs, snoRNAs, and hTR. Reduction of hNaf1 steady-state levels by RNAi significantly lowers accumulation of these components of box H/ACA scaRNP, snoRNP, and telomerase. hNaf1 is found predominantly in numerous discrete foci in the nucleoplasm and fails to accumulate within Cajal bodies or nucleoli. Altogether, these results suggest that hNaf1 intervenes in early assembly steps of human box H/ACA RNPs, including telomerase.  相似文献   

7.
8.
The structural basis for accurate placement of substrate RNA by H/ACA proteins is studied using a nonintrusive fluorescence assay. A model substrate RNA containing 2-aminopurine immediately 3′ of the uridine targeted for modification produces distinct fluorescence signals that report the substrate's docking status within the enzyme active site. We combined substrate RNA with complete and subcomplexes of H/ACA ribonucleoprotein particles and monitored changes in the substrate conformation. Our results show that each of the three accessory proteins, as well as an active site residue, have distinct effects on substrate conformations, presumably as docking occurs. Interestingly, in some cases these effects are exerted far from the active site. Application of our data to an available structural model of the holoenzyme, enables the functional role of each accessory protein in substrate placement to come into view.  相似文献   

9.
10.
11.
12.
Naf1 p is a box H/ACA snoRNP assembly factor   总被引:5,自引:1,他引:5       下载免费PDF全文
  相似文献   

13.
14.
15.
RNA structure and function in C/D and H/ACA s(no)RNPs   总被引:8,自引:0,他引:8  
From archaea to humans, C/D- and H/ACA-type small ribonucleoprotein particles play key roles in crucial RNA processing events. Various such particles are required for pre-rRNA cleavage steps and/or for chemical modification of rRNAs, spliceosomal small nuclear RNAs, tRNAs and perhaps even mRNAs. Each C/D-type particle contains a small RNA possessing conserved C and D, as well as related C' and D', sequence motifs, whereas each H/ACA-type particle contains a small RNA featuring conserved H and ACA sequence elements. Recently published studies highlight the importance of sequence and structural elements of these RNAs in the localization, activity and assembly of the ribonucleoprotein particles. A novel sequence element, the Cajal body box, found at the apex of stem structures within a subset of H/ACA small RNAs, mediates the specific retention of particles containing these elements inside nucleoplasmic Cajal bodies. Two highly conserved elements, the m1 and m2 boxes, have been identified in the 3' stem of the atypical H/ACA snR30/U17 RNAs. These conserved sequence elements are necessary for early pre-rRNA cleavage events and consequently for mature 18S rRNA production. Finally, convincing evidence has been provided that the conserved C and D sequence motifs of C/D-type small RNAs fold into a helix-bulge-helix structure, called a kink-turn, that provides a platform for assembly of C/D-type ribonucleoprotein particles.  相似文献   

16.
H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product.  相似文献   

17.
More than 100 mammalian H/ACA RNAs form an equal number of ribonucleoproteins (RNPs) by associating with the same four core proteins. The function of these H/ACA RNPs is essential for biogenesis of the ribosome, splicing of precursor mRNAs (pre-mRNAs), maintenance of telomeres and probably for additional cellular processes. Recent crystal structures of archaeal H/ACA protein complexes show how the same four proteins accommodate >100 distinct but related H/ACA RNAs and reveal that a spatial mutation cluster underlies dyskeratosis congenita, a syndrome of bone marrow failure.  相似文献   

18.
Unveiling substrate RNA binding to H/ACA RNPs: one side fits all   总被引:1,自引:0,他引:1  
The H/ACA RNP pseudouridylases function on a large number of extraordinarily complex RNA substrates including pre-ribosomal and small nuclear RNAs. Recent structural data show that H/ACA RNPs capture their RNA substrates via a simple one-sided attachment model. However, the precise placement of each RNA substrate into the active site of the catalytic subunit relies on the essential functions of the RNP proteins. The specific roles of each H/ACA RNP protein are being elucidated by a combination of structural and biochemical studies.  相似文献   

19.
We report the identification of a novel nucleolar protein from fission yeast, p17(nhp2), which is homologous to the recently identified Nhp2p core component of H+ACA snoRNPs in Saccharomyces cerevisiae. We show that the fission yeast p17(nhp2) localizes to the nucleolus in live S. cerevisiae or Schizosaccharomyces pombe cells and is functionally conserved since the fission yeast gene can complement a deletion of the NHP2 gene in budding yeast. Analysis of p17(nhp2) during the mitotic cell cycles of living fission and budding yeast cells shows that this protein, and by implication H+ACA snoRNPs, remains localized with nucleolar material during mitosis, although the gross organization of partitioning of p17(nhp2) during anaphase is different in a comparison of the two yeasts. During anaphase in S. pombe p17(nhp2) trails segregating chromatin, while in S. cerevisiae the protein segregates alongside bulk chromatin. The pattern of segregation comparing haploid and diploid S. cerevisiae cells suggests that p17(nhp2) is closely associated with the rDNA during nuclear division.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号