首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe MetAMOS, an open source and modular metagenomic assembly and analysis pipeline. MetAMOS represents an important step towards fully automated metagenomic analysis, starting with next-generation sequencing reads and producing genomic scaffolds, open-reading frames and taxonomic or functional annotations. MetAMOS can aid in reducing assembly errors, commonly encountered when assembling metagenomic samples, and improves taxonomic assignment accuracy while also reducing computational cost. MetAMOS can be downloaded from: https://github.com/treangen/MetAMOS.  相似文献   

2.
3.
Identifying cooperating modules of driver alterations can provide insights into cancer etiology and advance the development of effective personalized treatments. We present Cancer Rule Set Optimization (CRSO) for inferring the combinations of alterations that cooperate to drive tumor formation in individual patients. Application to 19 TCGA cancer types revealed a mean of 11 core driver combinations per cancer, comprising 2–6 alterations per combination and accounting for a mean of 70% of samples per cancer type. CRSO is distinct from methods based on statistical co‐occurrence, which we demonstrate is a suboptimal criterion for investigating driver cooperation. CRSO identified well‐studied driver combinations that were not detected by other approaches and nominated novel combinations that correlate with clinical outcomes in multiple cancer types. Novel synergies were identified in NRAS‐mutant melanomas that may be therapeutically relevant. Core driver combinations involving NFE2L2 mutations were identified in four cancer types, supporting the therapeutic potential of NRF2 pathway inhibition. CRSO is available at https://github.com/mikekleinsgit/CRSO/.  相似文献   

4.
Practical identifiability of Systems Biology models has received a lot of attention in recent scientific research. It addresses the crucial question for models’ predictability: how accurately can the models’ parameters be recovered from available experimental data. The methods based on profile likelihood are among the most reliable methods of practical identification. However, these methods are often computationally demanding or lead to inaccurate estimations of parameters’ confidence intervals. Development of methods, which can accurately produce parameters’ confidence intervals in reasonable computational time, is of utmost importance for Systems Biology and QSP modeling.We propose an algorithm Confidence Intervals by Constraint Optimization (CICO) based on profile likelihood, designed to speed-up confidence intervals estimation and reduce computational cost. The numerical implementation of the algorithm includes settings to control the accuracy of confidence intervals estimates. The algorithm was tested on a number of Systems Biology models, including Taxol treatment model and STAT5 Dimerization model, discussed in the current article.The CICO algorithm is implemented in a software package freely available in Julia (https://github.com/insysbio/LikelihoodProfiler.jl) and Python (https://github.com/insysbio/LikelihoodProfiler.py).  相似文献   

5.
The advent of high-throughput metagenomic sequencing has prompted the development of efficient taxonomic profiling methods allowing to measure the presence, abundance and phylogeny of organisms in a wide range of environmental samples. Multivariate sequence-derived abundance data further has the potential to enable inference of ecological associations between microbial populations, but several technical issues need to be accounted for, like the compositional nature of the data, its extreme sparsity and overdispersion, as well as the frequent need to operate in under-determined regimes.The ecological network reconstruction problem is frequently cast into the paradigm of Gaussian Graphical Models (GGMs) for which efficient structure inference algorithms are available, like the graphical lasso and neighborhood selection. Unfortunately, GGMs or variants thereof can not properly account for the extremely sparse patterns occurring in real-world metagenomic taxonomic profiles. In particular, structural zeros (as opposed to sampling zeros) corresponding to true absences of biological signals fail to be properly handled by most statistical methods.We present here a zero-inflated log-normal graphical model (available at https://github.com/vincentprost/Zi-LN) specifically aimed at handling such “biological” zeros, and demonstrate significant performance gains over state-of-the-art statistical methods for the inference of microbial association networks, with most notable gains obtained when analyzing taxonomic profiles displaying sparsity levels on par with real-world metagenomic datasets.  相似文献   

6.
G-quadruplex DNA structures have become attractive drug targets, and native mass spectrometry can provide detailed characterization of drug binding stoichiometry and affinity, potentially at high throughput. However, the G-quadruplex DNA polymorphism poses problems for interpreting ligand screening assays. In order to establish standardized MS-based screening assays, we studied 28 sequences with documented NMR structures in (usually ∼100 mM) potassium, and report here their circular dichroism (CD), melting temperature (Tm), NMR spectra and electrospray mass spectra in 1 mM KCl/100 mM trimethylammonium acetate. Based on these results, we make a short-list of sequences that adopt the same structure in the MS assay as reported by NMR, and provide recommendations on using them for MS-based assays. We also built an R-based open-source application to build and consult a database, wherein further sequences can be incorporated in the future. The application handles automatically most of the data processing, and allows generating custom figures and reports. The database is included in the g4dbr package (https://github.com/EricLarG4/g4dbr) and can be explored online (https://ericlarg4.github.io/G4_database.html).  相似文献   

7.
Rapidly improving high-throughput sequencing technologies provide unprecedented opportunities for carrying out population-genomic studies with various organisms. To take full advantage of these methods, it is essential to correctly estimate allele and genotype frequencies, and here we present a maximum-likelihood method that accomplishes these tasks. The proposed method fully accounts for uncertainties resulting from sequencing errors and biparental chromosome sampling and yields essentially unbiased estimates with minimal sampling variances with moderately high depths of coverage regardless of a mating system and structure of the population. Moreover, we have developed statistical tests for examining the significance of polymorphisms and their genotypic deviations from Hardy–Weinberg equilibrium. We examine the performance of the proposed method by computer simulations and apply it to low-coverage human data generated by high-throughput sequencing. The results show that the proposed method improves our ability to carry out population-genomic analyses in important ways. The software package of the proposed method is freely available from https://github.com/Takahiro-Maruki/Package-GFE.  相似文献   

8.
The rapid spread of COVID-19 is motivating development of antivirals targeting conserved SARS-CoV-2 molecular machinery. The SARS-CoV-2 genome includes conserved RNA elements that offer potential small-molecule drug targets, but most of their 3D structures have not been experimentally characterized. Here, we provide a compilation of chemical mapping data from our and other labs, secondary structure models, and 3D model ensembles based on Rosetta''s FARFAR2 algorithm for SARS-CoV-2 RNA regions including the individual stems SL1-8 in the extended 5′ UTR; the reverse complement of the 5′ UTR SL1-4; the frameshift stimulating element (FSE); and the extended pseudoknot, hypervariable region, and s2m of the 3′ UTR. For eleven of these elements (the stems in SL1–8, reverse complement of SL1–4, FSE, s2m and 3′ UTR pseudoknot), modeling convergence supports the accuracy of predicted low energy states; subsequent cryo-EM characterization of the FSE confirms modeling accuracy. To aid efforts to discover small molecule RNA binders guided by computational models, we provide a second set of similarly prepared models for RNA riboswitches that bind small molecules. Both datasets (‘FARFAR2-SARS-CoV-2’, https://github.com/DasLab/FARFAR2-SARS-CoV-2; and ‘FARFAR2-Apo-Riboswitch’, at https://github.com/DasLab/FARFAR2-Apo-Riboswitch’) include up to 400 models for each RNA element, which may facilitate drug discovery approaches targeting dynamic ensembles of RNA molecules.  相似文献   

9.
10.
Large scale catalogs of common genetic variants (including indels and structural variants) are being created using data from second and third generation whole-genome sequencing technologies. However, the genotyping of these variants in newly sequenced samples is a nontrivial task that requires extensive computational resources. Furthermore, current approaches are mostly limited to only specific types of variants and are generally prone to various errors and ambiguities when genotyping complex events. We are proposing an ultra-efficient approach for genotyping any type of structural variation that is not limited by the shortcomings and complexities of current mapping-based approaches. Our method Nebula utilizes the changes in the count of k-mers to predict the genotype of structural variants. We have shown that not only Nebula is an order of magnitude faster than mapping based approaches for genotyping structural variants, but also has comparable accuracy to state-of-the-art approaches. Furthermore, Nebula is a generic framework not limited to any specific type of event. Nebula is publicly available at https://github.com/Parsoa/Nebula.  相似文献   

11.
12.
As the cost of single-cell RNA-seq experiments has decreased, an increasing number of datasets are now available. Combining newly generated and publicly accessible datasets is challenging due to non-biological signals, commonly known as batch effects. Although there are several computational methods available that can remove batch effects, evaluating which method performs best is not straightforward. Here, we present BatchBench (https://github.com/cellgeni/batchbench), a modular and flexible pipeline for comparing batch correction methods for single-cell RNA-seq data. We apply BatchBench to eight methods, highlighting their methodological differences and assess their performance and computational requirements through a compendium of well-studied datasets. This systematic comparison guides users in the choice of batch correction tool, and the pipeline makes it easy to evaluate other datasets.  相似文献   

13.
Virus populations can display high genetic diversity within individual hosts. The intra-host collection of viral haplotypes, called viral quasispecies, is an important determinant of virulence, pathogenesis, and treatment outcome. We present HaploClique, a computational approach to reconstruct the structure of a viral quasispecies from next-generation sequencing data as obtained from bulk sequencing of mixed virus samples. We develop a statistical model for paired-end reads accounting for mutations, insertions, and deletions. Using an iterative maximal clique enumeration approach, read pairs are assembled into haplotypes of increasing length, eventually enabling global haplotype assembly. The performance of our quasispecies assembly method is assessed on simulated data for varying population characteristics and sequencing technology parameters. Owing to its paired-end handling, HaploClique compares favorably to state-of-the-art haplotype inference methods. It can reconstruct error-free full-length haplotypes from low coverage samples and detect large insertions and deletions at low frequencies. We applied HaploClique to sequencing data derived from a clinical hepatitis C virus population of an infected patient and discovered a novel deletion of length 357±167 bp that was validated by two independent long-read sequencing experiments. HaploClique is available at https://github.com/armintoepfer/haploclique. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5.  相似文献   

14.
Adaptive introgression—the flow of adaptive genetic variation between species or populations—has attracted significant interest in recent years and it has been implicated in a number of cases of adaptation, from pesticide resistance and immunity, to local adaptation. Despite this, methods for identification of adaptive introgression from population genomic data are lacking. Here, we present Ancestry_HMM-S, a hidden Markov model-based method for identifying genes undergoing adaptive introgression and quantifying the strength of selection acting on them. Through extensive validation, we show that this method performs well on moderately sized data sets for realistic population and selection parameters. We apply Ancestry_HMM-S to a data set of an admixed Drosophila melanogaster population from South Africa and we identify 17 loci which show signatures of adaptive introgression, four of which have previously been shown to confer resistance to insecticides. Ancestry_HMM-S provides a powerful method for inferring adaptive introgression in data sets that are typically collected when studying admixed populations. This method will enable powerful insights into the genetic consequences of admixture across diverse populations. Ancestry_HMM-S can be downloaded from https://github.com/jesvedberg/Ancestry_HMM-S/.  相似文献   

15.
16.
The binding affinities of protein-nucleic acid interactions could be altered due to missense mutations occurring in DNA- or RNA-binding proteins, therefore resulting in various diseases. Unfortunately, a systematic comparison and prediction of the effects of mutations on protein-DNA and protein-RNA interactions (these two mutation classes are termed MPDs and MPRs, respectively) is still lacking. Here, we demonstrated that these two classes of mutations could generate similar or different tendencies for binding free energy changes in terms of the properties of mutated residues. We then developed regression algorithms separately for MPDs and MPRs by introducing novel geometric partition-based energy features and interface-based structural features. Through feature selection and ensemble learning, similar computational frameworks that integrated energy- and nonenergy-based models were established to estimate the binding affinity changes resulting from MPDs and MPRs, but the selected features for the final models were different and therefore reflected the specificity of these two mutation classes. Furthermore, the proposed methodology was extended to the identification of mutations that significantly decreased the binding affinities. Extensive validations indicated that our algorithm generally performed better than the state-of-the-art methods on both the regression and classification tasks. The webserver and software are freely available at http://liulab.hzau.edu.cn/PEMPNI and https://github.com/hzau-liulab/PEMPNI.  相似文献   

17.
Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new “designability”-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license).
This is a PLOS Computational Biology Software Article
  相似文献   

18.
Understanding the relationships between biological processes is paramount to unravel pathophysiological mechanisms. These relationships can be modeled with Transfer Functions (TFs), with no need of a priori hypotheses as to the shape of the transfer function. Here we present Iliski, a software dedicated to TFs computation between two signals. It includes different pre-treatment routines and TF computation processes: deconvolution, deterministic and non-deterministic optimization algorithms that are adapted to disparate datasets. We apply Iliski to data on neurovascular coupling, an ensemble of cellular mechanisms that link neuronal activity to local changes of blood flow, highlighting the software benefits and caveats in the computation and evaluation of TFs. We also propose a workflow that will help users to choose the best computation according to the dataset. Iliski is available under the open-source license CC BY 4.0 on GitHub (https://github.com/alike-aydin/Iliski) and can be used on the most common operating systems, either within the MATLAB environment, or as a standalone application.  相似文献   

19.
A streaming assembly pipeline utilising real-time Oxford Nanopore Technology (ONT) sequencing data is important for saving sequencing resources and reducing time-to-result. A previous approach implemented in npScarf provided an efficient streaming algorithm for hybrid assembly but was relatively prone to mis-assemblies compared to other graph-based methods. Here we present npGraph, a streaming hybrid assembly tool using the assembly graph instead of the separated pre-assembly contigs. It is able to produce more complete genome assembly by resolving the path finding problem on the assembly graph using long reads as the traversing guide. Application to synthetic and real data from bacterial isolate genomes show improved accuracy while still maintaining a low computational cost. npGraph also provides a graphical user interface (GUI) which provides a real-time visualisation of the progress of assembly. The tool and source code is available at https://github.com/hsnguyen/assembly.  相似文献   

20.
Recent advances in metagenomic sequencing have enabled discovery of diverse, distinct microbes and viruses. Bacteriophages, the most abundant biological entity on Earth, evolve rapidly, and therefore, detection of unknown bacteriophages in sequence datasets is a challenge. Most of the existing detection methods rely on sequence similarity to known bacteriophage sequences, impeding the identification and characterization of distinct, highly divergent bacteriophage families. Here we present Seeker, a deep-learning tool for alignment-free identification of phage sequences. Seeker allows rapid detection of phages in sequence datasets and differentiation of phage sequences from bacterial ones, even when those phages exhibit little sequence similarity to established phage families. We comprehensively validate Seeker''s ability to identify previously unidentified phages, and employ this method to detect unknown phages, some of which are highly divergent from the known phage families. We provide a web portal (seeker.pythonanywhere.com) and a user-friendly Python package (github.com/gussow/seeker) allowing researchers to easily apply Seeker in metagenomic studies, for the detection of diverse unknown bacteriophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号