首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alu element-mediated gene silencing   总被引:1,自引:0,他引:1  
The Alu elements are conserved approximately 300-nucleotide-long repeat sequences that belong to the SINE family of retrotransposons found abundantly in primate genomes. Pairs of inverted Alu repeats in RNA can form duplex structures that lead to hyperediting by the ADAR enzymes, and at least 333 human genes contain such repeats in their 3'-UTRs. Here, we show that a pair of inverted Alus placed within the 3'-UTR of egfp reporter mRNA strongly represses EGFP expression, whereas a single Alu has little or no effect. Importantly, the observed silencing correlates with A-to-I RNA editing, nuclear retention of the mRNA and its association with the protein p54(nrb). Further, we show that inverted Alu elements can act in a similar fashion in their natural chromosomal context to silence the adjoining gene. For example, the Nicolin 1 gene expresses multiple mRNA isoforms differing in the 3'-UTR. One isoform that contains the inverted repeat is retained in the nucleus, whereas another lacking these sequences is exported to the cytoplasm. Taken together, these results support a novel role for Alu elements in human gene regulation.  相似文献   

2.
The Alu elements are conserved ~300 nucleotide long repeat sequences that belong to the SINE family of retrotransposons found abundantly in primate genomes. Although the vast majority of Alu elements appear to be genetically inert, it has been tempting to consider the great majority of them as â€?junk DNA. However, a growing line of evidence suggests that transcribed Alu RNAs are in fact functionally involved in a number of diverse biological processes. Pairs of inverted Alu repeats in RNA can form duplex structures that lead to A-to-I editing by the ADAR enzymes. In this review we discuss the possible biological effects of Alu editing, with particular focus on the regulation of gene expression by inverted Alu repeats in the 3a€?-UTR regions of mRNAs.  相似文献   

3.
4.
5.
6.
7.
Short interspersed nuclear elements (SINEs) are highly abundant, RNA polymerase III-transcribed noncoding retrotransposons that are silenced in somatic cells but activated during certain stresses including viral infection. How these induced SINE RNAs impact the host-pathogen interaction is unknown. Here we reveal that during murine gammaherpesvirus 68 (MHV68) infection, rapidly induced SINE RNAs activate the antiviral NF-κB signaling pathway through both mitochondrial antiviral-signaling protein (MAVS)-dependent and independent mechanisms. However, SINE RNA-based signaling is hijacked by the virus to enhance viral gene expression and replication. B2 RNA expression stimulates IKKβ-dependent phosphorylation of the major viral lytic cycle transactivator protein RTA, thereby enhancing its activity and increasing progeny virion production. Collectively, these findings suggest that SINE RNAs participate in the innate pathogen response mechanism, but that herpesviruses have evolved to co-opt retrotransposon activation for viral benefit.  相似文献   

8.
9.
10.
11.
Summary In a recent report mouse B1 genomic repeats were divided into six families representing different waves of fixation of B1 variants, consistent with the retroposition model of human Alu elements. These data are used to examine the distribution of nucleotide substitutions in individual genomic repeats with respect to family consensus sequences and to compare the minimal energy structures of the corresponding B1 RNAs. By an enzymatic approach the predicted structure of B1 RNAs is experimentally confirmed using as a model sequence an RNA of a young B1 family member transcribed in vitro by T7 RNA polymerase. B1 RNA preserves folding domains of the Alu fragment of 7SL RNA, its progenitor molecule. Our results reveal similarities among 7SL-like retroposons, human Alu, and rodent B1 repeats, and relate the evolutionary conservation of B1 family consensus sequences to selection at the RNA level.  相似文献   

12.
Parental age at first pregnancy is increasing worldwide. The offspring of aged father has been associated with higher risk of several neuropsychiatric disorders, such as schizophrenia and autism, but the underlying mechanism remains elusive. Here we report that advanced paternal age in mice alters the profile of transfer RNA‐derived small RNAs (tsRNAs). Injection of sperm tsRNAs from aged male mice into zygotes induced anxiety‐like behaviors in F1 males. RNA sequencing of the cerebral cortex and hippocampus of those F1 male mice altered the gene expression of dopaminergic synapse and neurotrophin. tsRNAs from aged male mice injection also altered the neuropsychiatry‐related gene expression in two‐cell and blastocyst stage embryos. More importantly, the sperm tsRNA profile changes significantly during aging in human. The up‐regulated sperm tsRNA target genes were involved in neurogenesis and nervous system development. These results suggest that aging‐related changes of sperm tsRNA may contribute to the intergenerational transmission of behavioral traits.  相似文献   

13.
Selective stimulation of translational expression by Alu RNA   总被引:7,自引:1,他引:6  
  相似文献   

14.
15.
PIWI‐interacting RNAs (piRNAs) guide PIWI proteins to silence transposable elements and safeguard fertility in germ cells. Many protein factors required for piRNA biogenesis localize to perinuclear ribonucleoprotein (RNP) condensates named nuage, where target silencing and piRNA amplification are thought to occur. In mice, some of the piRNA factors are found in discrete cytoplasmic foci called processing bodies (P‐bodies). However, the dynamics and biological significance of such compartmentalization of the piRNA pathway remain unclear. Here, by analyzing the subcellular localization of functional mutants of piRNA factors, we show that piRNA factors are actively compartmentalized into nuage and P‐bodies in silkworm cells. Proper demixing of nuage and P‐bodies requires target cleavage by the PIWI protein Siwi and ATP hydrolysis by the DEAD‐box helicase BmVasa, disruption of which leads to promiscuous overproduction of piRNAs deriving from non‐transposable elements. Our study highlights a role of dynamic subcellular compartmentalization in ensuring the fidelity of piRNA biogenesis.  相似文献   

16.
RNA editing by the adenosine deaminase ADAR1 prevents innate immune responses to endogenous RNAs. In ADAR1‐deficient cells, unedited self RNAs form base‐paired structures that resemble viral RNAs and inadvertently activate the cytosolic RIG‐I‐like receptor (RLR) MDA5, leading to an antiviral type I interferon (IFN) response. Mutations in ADAR1 cause Aicardi‐Goutières Syndrome (AGS), an autoinflammatory syndrome characterized by chronic type I IFN production. Conversely, ADAR1 loss and the consequent type I IFN production restricts tumor growth and potentiates the activity of some chemotherapeutics. Here, we show that another RIG‐I‐like receptor, LGP2, also has an essential role in the induction of a type I IFN response in ADAR1‐deficient human cells. This requires the canonical function of LGP2 as an RNA sensor and facilitator of MDA5‐dependent signaling. Furthermore, we show that the sensitivity of tumor cells to ADAR1 loss requires LGP2 expression. Finally, type I IFN induction in tumor cells depleted of ADAR1 and treated with some chemotherapeutics fully depends on LGP2 expression. These findings highlight a central role for LGP2 in self RNA sensing with important clinical implications.  相似文献   

17.
18.
19.
Nearly 1 million Alu elements in human DNA were inserted by an RNA-mediated retroposition-amplification process that clearly decelerated about 30 million years ago. Since then, Alu sequences have proliferated at a lower rate, including within the human genome, in which Alu mobility continues to generate genetic variability. Initially derived from 7SL RNA of the signal recognition particle (SRP), Alu became a dominant retroposon while retaining secondary structures found in 7SL RNA. We previously identified a human Alu RNA-binding protein as a homolog of the 14-kDa Alu-specific protein of SRP and have shown that its expression is associated with accumulation of 3'-processed Alu RNA. Here, we show that in early anthropoids, the gene encoding SRP14 Alu RNA-binding protein was duplicated and that SRP14-homologous sequences currently reside on different human chromosomes. In anthropoids, the active SRP14 gene acquired a GCA trinucleotide repeat in its 3'-coding region that produces SRP14 polypeptides with extended C-terminal tails. A C-->G substitution in this region converted the mouse sequence CCA GCA to GCA GCA in prosimians, which presumably predisposed this locus to GCA expansion in anthropoids and provides a model for other triplet expansions. Moreover, the presence of the trinucleotide repeat in SRP14 DNA and the corresponding C-terminal tail in SRP14 are associated with a significant increase in SRP14 polypeptide and Alu RNA-binding activity. These genetic events occurred during the period in which an acceleration in Alu retroposition was followed by a sharp deceleration, suggesting that Alu repeats coevolved with C-terminal variants of SRP14 in higher primates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号