共查询到20条相似文献,搜索用时 15 毫秒
1.
The estimation of forest aboveground biomass (AGB) is critical for quantifying carbon stocks and essential for evaluating global carbon cycle. Many previous studies have estimated forest AGB using airborne discrete-return Light Detection and Ranging (LiDAR) data, while fewer studies predicted forest AGB using airborne full-waveform LiDAR data. The objective of this work was to evaluate the utility of airborne discrete-return and full-waveform LiDAR data in estimating forest AGB. To fulfill the objective, airborne discrete-return LiDAR-derived metrics (DR-metrics), full-waveform LiDAR-derived metrics (FW-metrics) and structure parameters (combining height metrics and canopy cover) were used to estimate forest AGB. Additionally, the combined use of DR- and FW-metrics through a nonlinear way was also evaluated for AGB estimation in a coniferous forest in Dayekou, Gansu province of China. Results indicated that both height metrics derived from discrete-return and full-waveform LiDAR data were stronger predictors of forest AGB compared with other LiDAR-derived metrics. Canopy cover derived from discrete-return LiDAR data was not sensitive to forest AGB, while canopy cover estimated by full-waveform LiDAR data (CCWF) showed moderate correlation with forest AGB. Structure parameters derived from full-waveform LiDAR data, such as H75FW * CCFW, were closely related to forest AGB. In contrast, structure parameters derived from discrete-return LiDAR data were not suitable for estimating forest AGB due to the less sensitivity of canopy cover CCDR2 to forest AGB. This research also concluded that the synergistic use of DR- and FW-metrics can provide better AGB estimates in coniferous forest. 相似文献
2.
Koichi Takahashi 《Plant Ecology》2010,211(1):159-169
Stand dynamics was studied over 13 years in a cool-temperate conifer-hardwood forest, northern Japan. A total 30 hardwood
species and one conifer, Abies sachalinensis, larger than 1.5 cm DBH were recorded. The total stand density was 1677 trees ha−1 at the beginning, decreasing to 1184 trees ha−1 (30% reduction) over the study period, but the total stand basal area was almost unchanged (about 49 m2 ha−1). This large reduction in total density was mainly due to the death of saplings and infrequent recruitment. Number of recruits
gradually decreased with time, while that of dead trees was constant. Cause of death of small trees was mainly due to suppression
by tall trees. Skewness of the DBH frequency distribution varied among the species. A less skewed frequency distribution (i.e.,
few number of saplings) was shown by shade-intolerant species such as Populus maximowiczii and Betula maximowicziana, and a more skewed frequency distribution (i.e., large number of saplings) by shade-tolerant species such as Acer mono and Tilia japonica. DBH frequency distribution changed to less skewed patterns with reduction of density in most species during the census period.
Rank of shade tolerance positively correlated with tree density and skewness, and negatively correlated with mean DBH. Skewness
also positively correlated with recruitment rates. Furthermore, rank of shade tolerance positively correlated with seed size.
These results suggest that shade-intolerant species regenerated immediately after disturbances by wide dispersal of small
seeds, but their recruitment was interrupted after that. By contrast, shade-tolerant species were able to recruit even after
the ceasation of recruitment of shade-intolerant species, but suffered severe mortality due to the increasing shading with
the progress of stand development. This study suggests that the stand is still developing, with changes in species composition
and size structure, and that species differences in shade tolerance and seed size are important for the stand structural changes. 相似文献
3.
Vegetation biomass is a key biophysical parameter for many ecological and environmental models. The accurate estimation of biomass is essential for improving the accuracy and applicability of these models. Light Detection and Ranging (LiDAR) data have been extensively used to estimate forest biomass. Recently, there has been an increasing interest in fusing LiDAR with other data sources for directly measuring or estimating vegetation characteristics. In this study, the potential of fused LiDAR and hyperspectral data for biomass estimation was tested in the middle Heihe River Basin, northwest China. A series of LiDAR and hyperspectral metrics were calculated to obtain the optimal biomass estimation model. To assess the prediction ability of the fused data, single and fused LiDAR and hyperspectral metrics were regressed against field-observed belowground biomass (BGB), aboveground biomass (AGB) and total forest biomass (TB). The partial least squares (PLS) regression method was used to reduce the multicollinearity problem associated with the input metrics. It was found that the estimation accuracy of forest biomass was affected by LiDAR plot size, and the optimal plot size in this study had a radius of 22 m. The results showed that LiDAR data alone could estimate biomass with a relative high accuracy, and hyperspectral data had lower prediction ability for forest biomass estimation than LiDAR data. The best estimation model was using a fusion of LiDAR and hyperspectral metrics (R2 = 0.785, 0.893 and 0.882 for BGB, AGB and TB, respectively, with p < 0.0001). Compared with LiDAR metrics alone, the fused LiDAR and hyperspectral data improved R2 by 5.8%, 2.2% and 2.6%, decreased AIC value by 1.9%, 1.1% and 1.2%, and reduced RMSE by 8.6%, 7.9% and 8.3% for BGB, AGB and TB, respectively. These results demonstrated that biomass accuracies could be improved by the use of fused LiDAR and hyperspectral data, although the improvement was slight when compared with LiDAR data alone. This slight improvement could be attributed to the complementary information contained in LiDAR and hyperspectral data. In conclusion, fusion of LiDAR and other remotely sensed data has great potential for improving biomass estimation accuracy. 相似文献
4.
Canopy closure estimation in a temperate forest using airborne LiDAR and LANDSAT ETM+ data 下载免费PDF全文
《植物生态学报》2016,40(2):102
Aims Forest canopy closure is one of the essential factors in forest survey, and plays an important role in forest ecosystem management. It is of great significance to study how to apply LiDAR (light detection and ranging) data efficiently in remote sensing estimation of forest canopy closure. LiDAR can be used to obtain data fast and accurately and therefore be used as training and validation data to estimate forest canopy closure in large spatial scale. It can compensate for the insufficiency (e.g. labor-intensive, time-consuming) of conventional ground survey, and provide foundations to forest inventory.Methods In this study, we estimated canopy closure of a temperate forest in Genhe forest of Da Hinggan Ling area, Nei Mongol, China, using LiDAR and LANDSAT ETM+ data. Firstly, we calculated the canopy closure from ALS (Airborne Laser Scanning) high density point cloud data. Then, the estimated canopy closure from ALS data was used as training and validation data to modeling and inversion from eight vegetation indices computed from LANDSAT ETM+ data. Three approaches, multi-variable stepwise regression (MSR), random forest (RF) and Cubist, were developed and tested to estimate canopy closure from these vegetation indices, respectively.Important findings The validation results showed that the Cubist model yielded the highest accuracy compared to the other two models (determination coefficient (R2) = 0.722, root mean square error (RMSE) = 0.126, relative root mean square error (rRMSE) = 0.209, estimation accuracy (EA) = 79.883%). The combination of LiDAR data and LANDSAT ETM+ showed great potential to accurately estimate the canopy closure of the temperate forest. However, the model prediction capability needs to be further improved in order to be applied in larger spatial scale. More independent variables from other remotely sensed datasets, e.g. topographic data, texture information from high-resolution imagery, should be added into the model. These variables can help to reduce the influence of optical image, vegetation indices, terrain and shadow and so on. Moreover, the accuracy of the LiDAR-derived canopy closure needs to be further validated in future studies. 相似文献
5.
以雪峰山武冈林场为研究对象,利用遥感数据和地面实测样地数据,研究机载激光雷达(LiDAR)估测中亚热带森林乔木层单木地上生物量的能力.利用条件随机场和最优化方法实现LiDAR点云的单木分割,以单木尺度为对象提取的植被点云空间结构、回波特征以及地形特征等作为遥感变量,采用回归模型估测乔木层地上生物量.结果表明: 针叶林、阔叶林和针阔混交林的单木识别率分别为93%、86%和60%;多元逐步回归模型的调整决定系数分别为0.83、0.81和0.74,均方根误差分别为28.22、29.79和32.31 t·hm-2;以冠层体积、树高百分位值、坡度和回波强度值构成的模型精度明显高于以树高为因子的传统回归模型精度.以单木为对象从LiDAR点云中提取的遥感变量有助于提高森林生物量估测精度.
相似文献
6.
7.
The relationships between habitat variables and population densities of masu salmon (Oncorhynchus masou), rosyface dace (Leuciscus ezoe), Siberian stone loach (Noemacheilus barbatulus) and wrinklehead sculpin (Cottus nozawae) were examined by data collected at 55 reaches in forest and grassland streams in northern Hokkaido, Japan. Regression analysis suggested that salmon and dace densities were affected by water temperature (negative for salmon, positive for dace) and structural habitat factors (woody debris for salmon, pools for dace). Salmon density was higher in forest reaches than in grassland reaches, whereas dace density was higher in grassland reaches, suggesting that the removal of riparian forest had raised water temperature and allowed upstream invasions by dace. In contrast to salmon and dace, neither the density of loach nor sculpin differed between the forest and grassland reaches. For their densities, a negative effect of each on the other was most important, suggesting a strong effect of interspecific competition between loach and sculpin on their distributions. However, regression models also suggested that substrate heterogeneity mediated the outcome of their interspecific competition. On the basis of the results, a scenario is predicted for a fish-assemblage change with a typical land-development process in Hokkaido, and the importance of leaving or restoring riparian buffer for conservation and restoration of stream habitat is emphasized. 相似文献
8.
Michiyasu Yasaka Satoshi Kobayashi Shinji Takeuchi Sawako Tokuda Mika Takiya Yasuyuki Ohno 《Aerobiologia》2009,25(2):111-117
Birch pollen is a very common cause of pollinosis in Hokkaido, northern Japan. Birch airborne pollen concentrations vary each
year; hence, the development of a method for predicting annual airborne pollen concentration is very important in preventing
widespread symptoms of pollinosis. In the current study, we investigated airborne pollen counts and male catkin numbers (male
flower index) of birch in four cities of Hokkaido between 2002 and 2008. Airborne pollen surveys were conducted using Durham’s
sampler, and male catkin numbers determined for three major birch species (Betula platyphylla var. japonica, B. emanii, and B. maximowicziana). We found an annual variation in male flower index for all the three birch species investigated. This variation worked in
combination with the amount of precipitation during the pollen season to influence total birch pollen counts. In conclusion,
the male catkin numbers of three major birch species reliably predict airborne pollen counts in Hokkaido, but only when the
effect of precipitation during pollen season is considered. 相似文献
9.
Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data 总被引:1,自引:0,他引:1 下载免费PDF全文
快速、定量、精确地估算区域森林生物量一直是森林生态功能评价以及碳储量研究的重要问题。该研究基于机载激光雷达(LiDAR)点云与Landsat 8 OLI多光谱数据, 借助江苏省常熟市虞山地区55块调查样地数据, 首先提取并分析了87个特征变量(53个OLI特征变量, 34个LiDAR特征变量)与森林地上、地下生物量的Pearson’s相关系数以进行变量优选, 然后利用多元逐步回归法建立森林生物量估算模型(OLI生物量估算模型和LiDAR生物量估算模型), 并与基于两种数据建立的综合生物量估算模型的结果进行比较, 讨论预测结果及其精确性。结果表明: 3种模型(OLI模型、LiDAR模型和综合模型)在所有样地无区分分析时, 地上和地下生物量的估算精度均达到0.4以上, 基于不同森林类型(针叶林、阔叶林、混交林)分析时地上和地下生物量的估算精度均有明显提高, 达到0.67及以上。利用分森林类型模型估算生物量, 综合生物量估算模型精度(地上生物量: R2为0.88; 地下生物量: R2为0.92)优于OLI生物量估算模型(地上生物量: R2为0.73; 地下生物量: R2为0.81)和LiDAR生物量估算模型(地上生物量: R2为0.86; 地下生物量: R2为0.83)。 相似文献
10.
Doo-Ahn Kwak Woo-Kyun Lee Hyun-Kook Cho Seung-Ho Lee Yowhan Son Menas Kafatos So-Ra Kim 《Journal of plant research》2010,123(4):421-432
The objective of this study was to estimate the stem volume and biomass of individual trees using the crown geometric volume
(CGV), which was extracted from small-footprint light detection and ranging (LiDAR) data. Attempts were made to analyze the
stem volume and biomass of Korean Pine stands (Pinus koraiensis Sieb. et Zucc.) for three classes of tree density: low (240 N/ha), medium (370 N/ha), and high (1,340 N/ha). To delineate
individual trees, extended maxima transformation and watershed segmentation of image processing methods were applied, as in
one of our previous studies. As the next step, the crown base height (CBH) of individual trees has to be determined; information
for this was found in the LiDAR point cloud data using k-means clustering. The LiDAR-derived CGV and stem volume can be estimated on the basis of the proportional relationship between
the CGV and stem volume. As a result, low tree-density plots had the best performance for LiDAR-derived CBH, CGV, and stem
volume (R
2 = 0.67, 0.57, and 0.68, respectively) and accuracy was lowest for high tree-density plots (R
2 = 0.48, 0.36, and 0.44, respectively). In the case of medium tree-density plots accuracy was R
2 = 0.51, 0.52, and 0.62, respectively. The LiDAR-derived stem biomass can be predicted from the stem volume using the wood
basic density of coniferous trees (0.48 g/cm3), and the LiDAR-derived above-ground biomass can then be estimated from the stem volume using the biomass conversion and
expansion factors (BCEF, 1.29) proposed by the Korea Forest Research Institute (KFRI). 相似文献
11.
Sadao Takaoka 《Ecological Research》1993,8(3):341-347
The effectiveness of estimating stand age from increment core samples taken at stump height (20 cm above ground) was tested
in an even-aged stand ofBetula ermanii that had regenerated after a forest fire in 1945 in Hokkaido, Japan. Careful cross-dating revealed that annual rings were
missing in 11 cores out of a total of 42 cores sampled, and that all these missing rings occurred in the outermost part of
the core. These facts indicate that precaution has to be taken in selecting trees from which cores are to be sampled. The
present work also revealed that those trees with missing rings have a characteristic appearance, with a thinner stem and less
crown foliage than normal trees with complete rings. It was also found that even if this appearance test failed, the possibility
of missing rings could be detected from a declining growth pattern, with extremely narrow rings on the increment core which
normal trees did not show. 相似文献
12.
Abstract. In the cool-temperate Bibi Mire, Hokkaido, Japan, valley fens and flood-plain fens have quite different vegetation. The main variables controlling the vegetation were all hydrological: mean water level, water level fluctuation and surface water flow. Chemical factors such as electrical conductivity, dissolved oxygen and related peat decomposition were less important. The pH was about neutral and has little effect. The flood-plain fen developed under fluctuating water table conditions. The dominant species are Calamagrostis langsdotffii and Carex pseudocuraica. When temporal inundation occurs in the rainy or typhoon seasons, the submergence stimulates bud germination of the stoloniferous C. pseudocuraica, which can rapidly elongate its stolons upward. Some large floating peat mats occurred in the flood-plain fen zone. On these mats some Alnus japonica saplings establish and patches of alder forest can arise. Here the water level was higher than in the peripheral alder forest zone. The valley fen is dominated by Carex lasiocarpa var. occultans and/or C. limosa. It is formed under stable water table conditions in the inundated parts of the mire -where the non-inundated wet areas are dominated by alder trees. In the area where the surface water is flowing, these two fen sedges grow in deeper water since the high oxygen content is considered to compensate the flooding stress. 相似文献
13.
Tree competition and species coexistence in a cool-temperate old-growth forest in southwestern Japan
Abstract. The growth dynamics and mode of competition between adult trees ≥ 4 cm in DBH (stem diameter at breast height 1.3 m) of eight abundant species occupying ca. 90 % of the total basal area were investigated in a 4-ha study plot (200 m × 200 m) of a cool-temperate, old-growth forest on Mount Daisen, southwestern Japan. In the study plot, 30 tree species with individuals ≥ 4.0 cm DBH co-occurred. A bimodal DBH distribution showing upper and lower-canopy layers was found for the most dominant and largest species, Fagus crenata (ca. 78 % of the total basal area), whilst other tree species showed unimodal DBH distributions corresponding mostly to the lower-canopy layer. We developed a model for individual growth incorporating both intra and interspecific competition and the degree of competitive asymmetry. Onesided interspecific competition was detected only from Fagus crenata (upper-canopy species) to Acer japonicum and Acanthopanax sciadophylloides (lower-canopy species) on the scale of the 4-ha study plot. Only Acanthopanax sciadophylloides showed symmetric intraspecific competition. However, a positive (non-competitive) interspecific relationship between adult trees prevailed over a competitive relationship; for example, individual DBH growth rate of Fagus crenata (especially lower-canopy trees) was correlated with the abundance of Acer mono. The positive relationship represented a group of species with similar habitat preference [soil type (mature or immature) caused by landslide disturbance and the presence/absence of Sasa dwarf bamboos in the understorey], where tree densities were not so high as to bring about competition. Competitive interactions between adult trees ≥ 4 cm in DBH occurred only locally between a few specific species and were suggested to be almost irrelevant to the variation in species coexistence on the 4-ha scale of cool-temperate forest. Rather, the coexistence of 30 tree species (species diversity) on this large scale was suggested to be governed by the regeneration pattern of each component species (habitat preference, seedling establishment, sapling competition) with respect to landslide disturbance. 相似文献
14.
The regeneration process in a mixed forest was investigated in Nopporo National Forest, Hokkaido. The analysis of age structure in an 80 m×80 m plot revealed that almost all of the species regenerated intermittently. In eleven gaps observed in the plot, the regeneration of a boreal conifer (Abies sachalinensis) was seldom observed. Temperate hardwoods, even climax species (Acer mono, Quercus mongolica var. grosseserrata, Tilia japonica), regenerated vigorously in the gaps. The age structure in ten additional plots scattered all over the forest showed that Abies tended to regenerate synchronously. From previous records, regeneration of Abies could be ascribed to catastrophic storms causing serious windfalls. On the other hand, regeneration of the temperate hardwoods was not synchronous but independent in different places within the forest. They could regenerate not only after those catastrophic storms but also after less severe disturbances which caused the death and fall of one or several trees. It is concluded that the coexistence of boreal coniferous species and temperate deciduous broad-leaved species in mixed forests may be maintained not only by the difference in habitat but also by the balance between the less frequent large disturbances, and the more frequent smaller ones. 相似文献
15.
Shigeru Mariko Noboru Nishimura Wenhong Mo Yoshisuke Matsui Takeshi Kibe Hiroshi Koizumi 《Ecological Research》2000,15(4):363-372
We measured diurnal and wintertime changes in CO2 fluxes from soil and snow surfaces in a Japanese cool-temperate Quercus/Betula forest between December 1994 and May 1995. To evaluate the relationship between these winter fluxes and temperature, flux measurements were made with the open-flow infrared gas analyzer (IRGA) method rather than with the more commonly used closed chamber method or the snow CO2 profile method. The open-flow IRGA method proved to be more successful in measurements of winter CO2 fluxes than the two standard methods. Despite colder air temperatures, soil temperature profiles were greater than 0°C because of the thermal insulation effect of deep snowpack. This reveals that soil temperature is satisfactory for microbial respiration throughout the winter. Unfrozen soils under the snowpack showed neither diurnal nor wintertime trends in CO2 fluxes or in soil surface temperature, although there was a daily snow surface CO2 flux of 0.18–0.32 g m–2. By combining this with other reference data, Japanese cool-temperate forest soils in snowy regions can be estimated to emit < 100 g m–2 carbon over an entire winter, and this value accounts for < 15% of the annual emission. In the present study, when data for all winter fluxes were taken together, fluxes were most highly correlated with deep soil temperatures rather than the soil surface temperature. Such a high correlation can be attributed to the relatively increased respiration of the deep soil where the temperature was higher than the soil surface temperature. Thus, deeper soil temperature is a better predictor of winter CO2 fluxes in cold and snowy ecosystems. 相似文献
16.
Carbon cycling and budget in a forested basin of southwestern Hokkaido,northern Japan 总被引:4,自引:1,他引:4
Quantification of annual carbon sequestration is very important in order to assess the function of forest ecosystems in combatting global climate change and the ecosystem responses to those changes. Annual cycling and budget of carbon in a forested basin was investigated to quantify the carbon sequestration of a cool-temperate deciduous forest ecosystem in the Horonai stream basin, Tomakomai Experimental Forest, northern Japan. Net ecosystem exchange, soil respiration, biomass increment, litterfall, soil-solution chemistry, and stream export were observed in the basin from 1999–2001 as a part of IGBP-TEMA project. We found that 258 g C m–2 year–1 was sequestered annually as net ecosystem exchange (NEE) in the forested basin. Discharge of carbon to the stream was 4 g C m–2 year–1 (about 2% of NEE) and consisted mainly of dissolved inorganic carbon (DIC). About 43% of net ecosystem productivity (NEP) was retained in the vegetation, while about 57% of NEP was sequestered in soil, suggesting that the movement of sequestered carbon from aboveground to belowground vegetation was an important process for net carbon accumulation in soil. The derived organic carbon from aboveground vegetation that moved to the soil mainly accumulated in the solid phase of the soil, with the result that the export of dissolved organic carbon to the stream was smaller than that of dissolved inorganic carbon. Our results indicated that the aboveground and belowground interaction of carbon fluxes was an important process for determining the rate and retention time of the carbon sequestration in a cool-temperate deciduous forest ecosystem in the southwestern part of Hokkaido, northern Japan. 相似文献
17.
Mitsutoshi Tomotsune Shinpei Yoshitake Shinya Watanabe Hiroshi Koizumi 《Ecological Research》2013,28(2):259-269
Trenching (Tr), root biomass regression (RR), and root excising (RE) methods were used to estimate the contribution of root (RR) and heterotrophic (HR) respiration to soil respiration (SR) in a cool-temperate deciduous forest in central Japan. The contribution ratios of RR to SR were 23 % (?16 to 46 %), 11 % (?19 to 61 %), and 115 % (20 to 393 %), as estimated by the Tr, RR, and RE methods, respectively. The contribution ratio showed clear seasonal variation with high values in summer for the Tr method, while they were undetectable for the RR and RE methods because of some methodological problems. These results suggest the Tr method is the best of the three methods used to estimate the contribution ratio of RR and HR to SR in the forest. Annual SR, RR, and HR rates, estimated by the Tr method, were 479, 369, 110 gC m?2 year?1, respectively. The seasonal variation of SR was mainly influenced by HR (77 %) throughout the year, while the influence of RR on SR was strongest in summer (46 %). This effect occurred because RR (Q 10 = 7.5) is more sensitive to temperature than HR (Q 10 = 3.2). Also, the contribution of fine RR to total RR was higher than that of coarse RR because of high respiratory activity (Q 10 and R 10) as well as the large biomass of fine roots. These results suggest that each component of SR responds differently to the same environmental factors and their relative influence on SR changes across the seasons. 相似文献
18.
Tomoko Negishi 《Landscape and Ecological Engineering》2008,4(2):83-89
The interrelation among size, biomass, and sprouting of alder trees was studied to extract the most important hydrochemistrical factors controlling the growth of alder forest in Kushiro Mire, northern Japan. The gradient was mostly explained by chemical variables such as pH, ash content, and P2O5, which showed strong positive correlation with each other, and secondarily by fluctuation of the water table (WL, i.e., water level range). These variables are more important than other hydrochemical ones, because neutral and turbid flood water replaces acidic mire water and conveys fine sediment with adsorbed phosphorus, which in turn could regulate the pH and amount of phosphorus. Also, the number of sprouts showed negative correlation mainly with tree size and redox potential (Eh), which suggested a flooded environment. Because of this, the size of alder was suppressed by hydrochemical variables; however, alder individuals producing new sprouts were maintained. We conclude that variation in size, biomass, and sprouting of alder was mainly controlled by acidity and phosphorus availability, and was significantly influenced by water fluctuation. 相似文献
19.
Abstract. The long-term growth dynamics of natural forest stands on the island of Hokkaido were described on the basis of an analysis of data from 38 permanent plots spanning 15–22 yr. Stand structure was characterized by basal area, stem density and tree size variability. To detect trends in stand structure, regression models for recruitment rate (per ha per yr), mortality rate and the rate of change in stem density and tree size variability were developed by a stepwise method using initial basal area, stem density, tree size variability, species composition summarized by LNMDS ordination, altitude, annual mean temperature, annual precipitation, type of understorey vegetation, topography and slope aspect as candidates for predictor variables. The same analyses were conducted for basal area increment (net growth) and its components: survivor growth = basal area gain by growth of surviving individuals and mortality = basal area loss by death of individuals. Stem density remained generally unchanged; recruitment was relatively low even in very sparse stands. Stand basal area generally increased as survivor growth was approximately double the mortality. Recruitment rate was strongly affected by the presence of dwarf bamboo (Sasa spp.) vegetation on the forest floor which inhibited tree regeneration. Mortality rate was density-dependent; dense stands had higher mortality than sparse stands. Density change rate (recruitment rate - mortality rate) was, therefore, determined by both the type of understorey vegetation and stem density. Survivor growth was high in stands with high stem density and basal area. Mortality was dependent on basal area and altitude. Net basal area increment (net growth) was dependent only on stem density with other factors that influenced survivor growth and mortality omitted. Tree size variability decreased in stands with high tree size variability whereas it increased in stands with low size variability. Based on the obtained models for density change rate and net basal area increment, trajectories of stands were illustrated on a log-log diagram of stem density and basal area. The predicted differences in trajectories as affected by the understorey vegetation type indicated the importance of dwarf bamboo vegetation for forest dynamics on Hokkaido. 相似文献
20.
Bacterial biomass on four different size fractions of benthic fine particulate organic matter (FPOM) was measured throughout a year in a woodland stream in Hokkaido, Japan. Bacterial biomass per ash free dry mass (AFDM) of the FPOM was significantly different among the four size fractions, while the biomass per unit surface area of FPOM was not. Annual mean of bacterial biomass per particle mass positively correlated to the surface area per mass in the four size fractions. In addition, negative correlation was found between the C:N ratio and bacterial biomass per AFDM in FPOM when all fractions were pooled. There was also negative correlation between C:N ratio and the surface area per particle mass in the four size fractions. The difference of bacterial biomass on FPOM among the size fractions could be ascribed to surface area and/or C:N ratio of FPOM, although these effects were not separately evaluated in the present study. 相似文献