首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Solution structure of a short DNA fragment studied by neutron scattering   总被引:2,自引:0,他引:2  
The solution structure of a DNA fragment of 130 base pairs and known sequence has been investigated by neutron small-angle scattering. In 0.1 M NaCl, the overall structure of the DNA fragment which contains the strong promoter A1 of the Escherichia coli phage T7 agrees with that expected for B-DNA. The neutron scattering curve is well fitted by that of a rigid rod with a length of 44 nm and a diameter of 2 nm. The results were confirmed by quasi-elastic light scattering and analytical centrifugation. The neutron measurements in H2O and D2O buffer reveal a cross-sectional inhomogeneity not detected by X-ray small-angle scattering. This inhomogeneity is caused by the hydration layer around the DNA core and not by the helical structure. The primary solvent shell has a density increased by at least 4-9% compared to bulk water.  相似文献   

6.
The Z-DNA structure has been shown to form in two crystals made from self-complementary DNA hexamers d(CGTDCG) and d(CDCGTG) which contain thymine/2-aminoadenine (TD) base pairs. The latter structure has been solved and refined to 1.3 A resolution and it shows only small conformational changes due to the introduction of the TD base pairs in comparison with the structure of d(CG)3. Spectroscopic studies with these compounds demonstrate that DNA molecules containing 2-aminoadenine residues form Z-DNA slightly more easily than do those containing adenine nucleotides, but not as readily as the parent sequence containing only guanine-cytosine base pairs.  相似文献   

7.
There are many great reports of polyamine stabilization of the Z-DNA by bridge conformation between neighboring, symmetry-related Z-DNA in the packing of crystals. However, polyamine binding to the minor groove of Z-DNA and stabilizing the Z-DNA structure has been rarely reported. We proved that the synthesized polyamines bind to the minor groove of Z-DNA and stabilize the conformation under various conditions, by X-ray crystallographic study. These polyamines consist of a polyamine nano wire structure. The modes of the polyamine interaction were changed under different conditions. It is the first example that the crystals consisted of metal free structure. This finding provides a basis for clarifying B-Z transition mechanics.  相似文献   

8.
It is well known that water molecules surrounding a protein play important roles in maintaining its structural stability. Water molecules are known to participate in several physiological processes through the formation of hydrogen bonds. However, the hydration structures of most proteins are not known well at an atomic level at present because X-ray protein crystallography has difficulties to localize hydrogen atoms. In contrast, neutron crystallography has no problem in determining the position of hydrogens with high accuracy.1 In this article, the hydration structures of three proteins are described- myoglobin, wild-type rubredoxin, and a mutant rubredoxin-the structures of which were solved at 1.5- or 1.6-A resolution by neutron structure determination. These hydration patterns show fascinating features and the water molecules adopt a variety of shapes in the neutron Fourier maps, revealing details of intermolecular hydrogen bond formation and dynamics of hydration. Our results further show that there are strong relationships between these shapes and the water environments.  相似文献   

9.
Native human Glu-plasminogen (Glu1-Asn791) was previously shown to have a radius of gyration of 39 A and a shape best described by a prolate ellipsoid [Mangel, W. F., Lin, B., & Ramakrishnan, V. (1990) Science 248, 69-73]. Upon occupation of a weak lysine-binding site, the shape reversibly changes to that best described by a Debye random coil with a radius of gyration of 56 A. Conversion from the closed to the open form is not accompanied by any change in secondary structure, hence the closed conformation is formed by interaction between domains, the five kringles and the protease domain, and this is abolished upon conversion to the open form. Here we analyzed by small-angle neutron scattering the conformations of human Lys-plasminogen (Lys78-Asn791) and the fragment K1-3 that contains the first three kringles of plasminogen (Tyr80-Val338 or Tyr80-Val354). The shape of Lys-plasminogen was best described by a Debye random coil with a radius of gyration of 51 A, and occupation of its lysine-binding sites by 6-aminohexanoic acid did not dramatically alter its conformation. Thus Lys-plasminogen was in the open form, similar to that of Glu-plasminogen with its lysine-binding sites occupied. The fragment K1-3 in the absence or presence of 6-aminohexanoic acid had a shape best described equally either by an elongated prolate ellipsoid or by a Debye random coil, with a radius of gyration of 29 A. Our model for the two forms of plasminogen is that, in the closed form, domain interaction generates a compact, almost globular, structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
R R Sinden  T J Kochel 《Biochemistry》1987,26(5):1343-1350
Z-DNA-forming sequences, (GT)21, (GT)12ATGT, and (CG)6TA(CG)6, were cloned into plasmids. These sequences formed left-handed Z-DNA conformations under torsional tension from negative supercoiling of DNA. 4,5',8-Trimethylpsoralen, on absorption of 360-nm light, forms monoadducts and interstrand cross-links in DNA that exists in the B-helical conformation. Trimethylpsoralen cross-links were introduced into the potential Z-DNA-forming sequences in relaxed DNA when these sequences existed as B-form DNA. In supercoiled DNA when these sequences existed in the Z conformation, the rate of cross-linking was greatly reduced, and trimethylpsoralen did not form monoadducts appreciably to Z-DNA. As an internal control in these experiments, the rates of cross-linking of the Z-DNA-forming sequences were measured relative to that of an adjacent, cloned sequence that could not adopt a Z conformation. The initial relative rates of cross-linking to Z-DNA-forming sequences were dependent on the superhelical density of the DNA, and the rates were ultimately reduced by factors of 10-15 for Z-DNA in highly supercoiled plasmids. This differential rate of cross-linking provides a novel assay for Z-DNA. Initial application of this assay in vivo suggests that a substantial fraction of (CG)6TA(CG)6, which existed as Z-DNA in plasmid molecules purified from cells, existed in the B conformation in vivo.  相似文献   

11.
Diethylpyrocarbonate (DEPC) carbethoxylates Z-DNA to an increased extent because the reactive N-7 atoms of purine residues appear structurally more accessible on Z-DNA as opposed to B-DNA. This chemical probe was used in DEPC footprinting experiments, which confirm the specificity of binding of anti-Z-DNA monoclonal antibodies and which probe regions of close contact in this DNA-protein complex. Antibody binding to segments of Z-DNA existing in supercoiled plasmids resulted in specific protection from DEPC hyper-reactivity within the Z-DNA segment and induction of hyper-reactivity in purines lying adjacent to the Z-segment. Two different monoclonal immunoglobulin preparations, Z22 and Z44, are shown to generate specific and distinct footprint patterns when bound to the Z-helix. Binding of these antibodies was also found to affect DNA conformation within the Z-DNA segment by influencing the equilibrium between the B- and Z-helical conformations.  相似文献   

12.
The large extracellular glycoprotein reelin directs neuronal migration during brain development and plays a fundamental role in layer formation. It is composed of eight tandem repeats of an approximately 380-residue unit, termed the reelin repeat, which has a central epidermal growth factor (EGF) module flanked by two homologous subrepeats with no obvious sequence similarity to proteins of known structure. The 2.05 A crystal structure of the mouse reelin repeat 3 reveals that the subrepeat assumes a beta-jelly-roll fold with unexpected structural similarity to carbohydrate-binding domains. Despite the interruption by the EGF module, the two subdomains make direct contact, resulting in a compact overall structure. Electron micrographs of a four-domain fragment encompassing repeats 3-6, which is capable of inducing Disabled-1 phosphorylation in neurons, show a rod-like shape. Furthermore, a three-dimensional molecular envelope of the fragment obtained by single-particle tomography can be fitted with four concatenated repeat 3 atomic structures, providing the first glimpse of the structural unit for this important signaling molecule.  相似文献   

13.
In this work, antibodies against Z-DNA were used to stain polytene chromosomes of Chironomus thummi thummi. By indirect immunofluorescence we report the first identification of left-handed conformation of DNA in a band region. The Chironomus pattern also contrasts with the general staining observed in Drosophila. In Chironomus the antibodies to Z-DNA bind to one interband region of the chromosome II and two bands regions of the chromosome IV.  相似文献   

14.
The expansion of d(CGG) trinucleotide repeats (TRs) lies behind several important neurodegenerative diseases. Atypical DNA secondary structures have been shown to trigger TR expansion: their characterization is important for a molecular understanding of TR disease. CD spectroscopy experiments in the last decade have unequivocally demonstrated that CGG runs adopt a left-handed Z-DNA conformation, whose features remain uncertain because it entails accommodating GG mismatches. In order to find this missing motif, we have carried out molecular dynamics (MD) simulations to explore all the possible Z-DNA helices that potentially form after the transition from B- to Z-DNA. Such helices combine either CpG or GpC Watson-Crick steps in Z-DNA form with GG-mismatch conformations set as either intrahelical or extrahelical; and participating in BZ or ZZ junctions or in alternately extruded conformations. Characterization of the stability and structural features (especially overall left-handedness, higher-temperature and steered MD simulations) identified two novel Z-DNA helices: the most stable one displays alternately extruded Gs, and is followed by a helix with symmetrically extruded ZZ junctions. The G-extrusion favors a seamless stacking of the Watson-Crick base pairs; extruded Gs favor syn conformations and display hydrogen-bonding and stacking interactions. Such conformations could have the potential to hijack the MMR complex, thus triggering further expansion.  相似文献   

15.

Background

The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules.

Scope of review

The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids.

Major conclusions

Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function.

General significance

Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins.  相似文献   

16.
During the past year, electron crystallography of membrane proteins has provided structural insights into the mechanism of several different transporters and into their interactions with lipid molecules within the bilayer. From a technical perspective there have been important advances in high-throughput screening of crystallization trials and in automated imaging of membrane crystals with the electron microscope. There have also been key developments in software, and in molecular replacement and phase extension methods designed to facilitate the process of structure determination.  相似文献   

17.
The physical properties of the DNA oligomer d(CGCGCGTTTTCGCGCG) in solvents containing 4 M NaClO4 and 0.1 M NaCl were investigated by proton NMR, optical melting, and circular dichroism spectroscopy. Results of these investigations are as follows: (i) The DNA hexadecamer exists as a unimolecular hairpin in either high or low salt. (ii) In high salt the stem region of the hairpin is in the left-handed Z conformation. (iii) In either high or low salt, the duplex stem of the hairpin is stabilized against melting by approximately 40 degrees C compared to the linear core duplex. The added stability of the hairpin is entropic in origin. (iv) In high salt, as the temperature is elevated, the equilibrium structure of the duplex stem of the hairpin shifts from the Z to the B conformation before melting. (v) In low salt, when the DNA duplex exists in the B conformation, attachment of a T4 single-strand loop to one end only slightly decreases (by 14%) the correlation time of the CH5-CH6 interproton vector. In high salt, when the DNA duplex exists in the Z conformation, the correlation time of the CH5-CH6 interproton vector decreases by 51%. Since these viscosity-corrected correlation times are taken to be indicators of duplex motions on the nanosecond time scale, this result directly suggests a larger amplitude of these motions is present in the duplex stem of the hairpin when it exists in the Z conformation.  相似文献   

18.
Antisera and antibodies against Z-DNA were used on metaphasic fixed chromosomes of a mammal, Gerbillus nigeriae (Gerbillidae, Rodentia). By indirect immunofluorescence and indirect immunoperoxidase labelling a heavy staining was detected in a fraction of the R-band positive heterochromatic segments, which are presumed to be rich in G-C base pairs. A weak and non homogeneous staining was also observed on euchromatic segments. The presence of a left-handed Z-DNA in mammalian chromosomes is discussed.  相似文献   

19.
The inclusion of protein contaminants into crystals of turkey egg white lysozyme (TEWL) was investigated by electrospray mass spectrometry of the dissolved crystals. The results show that significant amounts of the structurally related contaminant hen egg white lysozyme (HEWL) are included in the crystals of TEWL. The structurally unrelated contaminant RNAse A, on the other hand, is not included. The X-ray diffraction data statistics of a hybrid TEWL/HEWL crystal and an uncontaminated TEWL crystal were of similar quality. This indicates that, even though the crystals contain much higher levels of the contaminant than one would have expected after a recrystallization experiment, they are still suitable for X-ray diffraction experiments. However, attempts to detect the presence of the contaminant in the crystal by crystallographic structure refinement did not yield conclusive results.  相似文献   

20.
The crystal structures of the full-length Herpes simplex virus type 1 thymidine kinase in its unligated form and in a complex with an adenine analogue have been determined at 1.9 A resolution. The unligated enzyme contains four water molecules in the thymidine pocket and reveals a small induced fit on substrate binding. The structure of the ligated enzyme shows for the first time a bound adenine analogue after numerous complexes with thymine and guanine analogues have been reported. The adenine analogue constitutes a new lead compound for enzyme-prodrug gene therapy. In addition, the structure of mutant Q125N modifying the binding site of the natural substrate thymidine in complex with this substrate has been established at 2.5 A resolution. It reveals that neither the binding mode of thymidine nor the polypeptide backbone conformation is altered, except that the two major hydrogen bonds to thymidine are replaced by a single water-mediated hydrogen bond, which improves the relative acceptance of the prodrugs aciclovir and ganciclovir compared with the natural substrate. Accordingly, the mutant structure represents a first step toward improving the virus-directed enzyme-prodrug gene therapy by enzyme engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号