首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since its discovery, the BRCA1 tumor suppressor has been shown to play a role in multiple DNA damage response pathways. Here, we will review the involvement of BRCA1 in base-excision DNA repair and highlight its clinical implications.  相似文献   

2.
DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.  相似文献   

3.
4.
Nicotinamide adenine dinucleotide, NAD+, is a small metabolite coenzyme that is essential for the progress of crucial cellular pathways including glycolysis, the tricarboxylic acid cycle (TCA) and mitochondrial respiration. These processes consume and produce both oxidative and reduced forms of NAD (NAD+ and NADH). NAD+ is also important for ADP(ribosyl)ation reactions mediated by the ADP-ribosyltransferase enzymes (ARTDs) or deacetylation reactions catalyzed by the sirtuins (SIRTs) which use NAD+ as a substrate. In this review, we highlight the significance of NAD+ catabolism in DNA repair and cell death through its utilization by ARTDs and SIRTs. We summarize the current findings on the involvement of ARTD1 activity in DNA repair and most specifically its involvement in the trigger of cell death mediated by ARTD1 activation and energy depletion. By sharing the same substrate, the activities of ARTDs and SIRTs are tightly linked, are dependent on each other and are thereby involved in the same cellular processes that play an important role in cancer biology, inflammatory diseases and ischaemia/reperfusion.  相似文献   

5.
6.
7.
We present DR-GAS1, a unique, consolidated and comprehensive DNA repair genetic association studies database of human DNA repair system. It presents information on repair genes, assorted mechanisms of DNA repair, linkage disequilibrium, haplotype blocks, nsSNPs, phosphorylation sites, associated diseases, and pathways involved in repair systems. DNA repair is an intricate process which plays an essential role in maintaining the integrity of the genome by eradicating the damaging effect of internal and external changes in the genome. Hence, it is crucial to extensively understand the intact process of DNA repair, genes involved, non-synonymous SNPs which perhaps affect the function, phosphorylated residues and other related genetic parameters. All the corresponding entries for DNA repair genes, such as proteins, OMIM IDs, literature references and pathways are cross-referenced to their respective primary databases. DNA repair genes and their associated parameters are either represented in tabular or in graphical form through images elucidated by computational and statistical analyses. It is believed that the database will assist molecular biologists, biotechnologists, therapeutic developers and other scientific community to encounter biologically meaningful information, and meticulous contribution of genetic level information towards treacherous diseases in human DNA repair systems. DR-GAS is freely available for academic and research purposes at: http://www.bioinfoindia.org/drgas.  相似文献   

8.
Unresolved replication intermediates can block the progression of replication forks and become converted into DNA lesions, hence exacerbating genomic instability. The p53-binding protein 1 (53BP1) forms nuclear bodies at sites of unrepaired DNA lesions to shield these regions against erosion, in a manner dependent on the DNA damage kinase ATM. The molecular mechanism by which ATM is activated upon replicative stress to localize the 53BP1 protection complex is unknown. Here we show that the ATM-INteracting protein ATMIN (also known as ASCIZ) is partially required for 53BP1 localization upon replicative stress. Additionally, we demonstrate that ATM activation is impaired in cells lacking ATMIN and we define that ATMIN is required for initiating ATM signaling following replicative stress. Furthermore, loss of ATMIN leads to chromosomal segregation defects. Together these data reveal that chromatin integrity depends on ATMIN upon exposure to replication-induced stress.  相似文献   

9.
DNA topoisomerase 2 (Top2) poisons, including common anticancer drugs etoposide and doxorubicin kill cancer cells by stabilizing covalent Top2-tyrosyl-DNA 5′-phosphodiester adducts and DNA double-strand breaks (DSBs). Proteolytic degradation of the covalently attached Top2 leaves a 5′-tyrosylated blocked termini which is removed by tyrosyl DNA phosphodiesterase 2 (TDP2), prior to DSB repair through non-homologous end joining (NHEJ). Thus, TDP2 confers resistance of tumor cells to Top2-poisons by repairing such covalent DNA-protein adducts, and its pharmacological inhibition could enhance the efficacy of Top2-poisons. We discovered NSC111041, a selective inhibitor of TDP2, by optimizing a high throughput screening (HTS) assay for TDP2’s 5′-tyrosyl phosphodiesterase activity and subsequent validation studies. We found that NSC111041 inhibits TDP2’s binding to DNA without getting intercalated into DNA and enhanced etoposide’s cytotoxicity synergistically in TDP2-expressing cells but not in TDP2 depleted cells. Furthermore, NSC111041 enhanced formation of etoposide-induced γ-H2AX foci presumably by affecting DSB repair. Immuno-histochemical analysis showed higher TDP2 expression in a sub-set of different type of tumor tissues. These findings underscore the feasibility of clinical use of suitable TDP2 inhibitors in adjuvant therapy with Top2-poisons for a sub-set of cancer patients with high TDP2 expression.  相似文献   

10.
DNA double stranded breaks (DSBs) are the most cytoxic DNA lesion as the inability to properly repair them can lead to genomic instability and tumorigenesis. The prominent DSB repair pathway in humans is non-homologous end-joining (NHEJ). In the simplest sense, NHEJ mediates the direct re-ligation of the broken DNA molecule. However, NHEJ is a complex and versatile process that can repair DSBs with a variety of damages and ends via the utilization of a significant number of proteins. In this review we will describe the important factors and mechanisms modulating NHEJ with emphasis given to the versatility of this repair process and the DNA-PK complex.  相似文献   

11.
《Process Biochemistry》2014,49(4):697-705
Jiangxienone is a novel compound recently purified from the traditional Chinese medicinal mushroom Cordyceps jiangxiensis and was reported to show potent cytotoxicity against cancer cells. However, its mechanism of action remains unclear. In this work, the underlying mechanism of jiangxienone against human gastric cancer cells HGC-27 was investigated using whole-genome microarray. The results demonstrated that jiangxienone significantly decreased cell population of various human cancer cell lines, while slightly inhibited the colony formation of stromal cells from murine marrow even at a high concentration. Differential gene expression profiling indicated that the cytotoxic action of jiangxienone against HGC-27 is closely related to the DNA damage response pathway, which was evident by the identification of 23 DNA damage response-associated genes, such as XRCC4/5/6, NBS1, RAD51, and BRCA1/2. By using gel retardation assays, UV absorption spectrometry and single-cell gel electrophoresis, it was found that jiangxienone could bind to DNA and inhibit cancer cell growth. The above results indicated that the cytotoxic mechanism of jiangxienone against cancer cells was involved in the DNA damage response pathway. The findings will be helpful to the development of useful cancer chemopreventive compounds from C. jiangxiensis.  相似文献   

12.
13.
An important role for the DNA mismatch repair (MMR) pathway in maintaining genomic stability is embodied in its conservation through evolution and the link between loss of MMR function and tumorigenesis. The latter is evident as inheritance of mutations within the major MMR genes give rise to the cancer predisposition condition, Lynch syndrome. Nonetheless, how MMR loss contributes to tumorigenesis is not completely understood. In addition to preventing the accumulation of mutations, MMR also directs cellular responses, such as cell cycle checkpoint or apoptosis activation, to different forms of DNA damage. Understanding this MMR-dependent DNA damage response may provide insight into the full tumor suppressing capabilities of the MMR pathway. Here, we delve into the proposed mechanisms for the MMR-dependent response to DNA damaging agents. We discuss how these pre-clinical findings extend to the clinical treatment of cancers, emphasizing MMR status as a crucial variable in selection of chemotherapeutic regimens. Also, we discuss how loss of the MMR-dependent damage response could promote tumorigenesis via the establishment of a survival advantage to endogenous levels of stress in MMR-deficient cells.  相似文献   

14.
Oxidative-stress-driven lipid peroxidation (LPO) is involved in the pathogenesis of several human diseases, including cancer. LPO products react with cellular proteins changing their properties, and with DNA bases to form mutagenic etheno-DNA adducts, removed from DNA mainly by the base excision repair (BER) pathway.One of the major reactive aldehydes generated by LPO is 4-hydroxy-2-nonenal (HNE). We investigated the effect of HNE on BER enzymes in human cells and in vitro. K21 cells pretreated with physiological HNE concentrations were more sensitive to oxidative and alkylating agents, H2O2 and MMS, than were untreated cells. Detailed examination of the effects of HNE on particular stages of BER in K21 cells revealed that HNE decreases the rate of excision of 1,N6-ethenoadenine (ɛA) and 3,N4-ethenocytosine (ɛC), but not of 8-oxoguanine. Simultaneously HNE increased the rate of AP-site incision and blocked the re-ligation step after the gap-filling by DNA polymerases. This suggested that HNE increases the number of unrepaired single-strand breaks (SSBs) in cells treated with oxidizing or methylating agents. Indeed, preincubation of cells with HNE and their subsequent treatment with H2O2 or MMS increased the number of nuclear poly(ADP-ribose) foci, known to appear in cells in response to SSBs. However, when purified BER enzymes were exposed to HNE, only ANPG and TDG glycosylases excising ɛA and ɛC from DNA were inhibited, and only at high HNE concentrations. APE1 endonuclease and 8-oxoG-DNA glycosylase 1 (OGG1) were not inhibited. These results indicate that LPO products exert their promutagenic action not only by forming DNA adducts, but in part also by compromising the BER pathway.  相似文献   

15.
16.
DNA double strand break (DSB) repair pathway choice following ionizing radiation (IR) is currently an appealing research topic, which is still largely unclear. Our recent paper indicated that the complexity of DSBs is a critical factor that enhances DNA end resection. It has been well accepted that the RPA-coated single strand DNA produced by resection is a signaling structure for ATR activation. Therefore, taking advantage of high linear energy transfer (LET) radiation to effectively produce complex DSBs, we investigated how the complexity of DSB influences the function of ATR pathway on the G2/M checkpoint regulation. Human skin fibroblast cells with or without ATM were irradiated with X rays or heavy ion particles, and dual-parameter flow cytometry was used to quantitatively assess the mitotic entry at early period post radiation by detecting the cells positive for phosphor histone H3. In ATM-deficient cells, ATR pathway played a pivotal role and functioned in a dose- and LET-dependent way to regulate the early G2/M arrest even as low as 0.2 Gy for heavy ion radiation, which indicated that ATR pathway could be rapidly activated and functioned in an ATM-independent, but DSB complexity-dependent manner following exposure to IR. Furthermore, ATR pathway also functioned more efficiently in ATM-proficient cells to block G2 to M transition at early period of particle radiation exposure. Accordingly, in contrast to ATM inhibitor, ATR inhibitor had a more effective radiosensitizing effect on survival fraction following heavy ion beams as compared with X ray radiation. Taken together, our results reveal that the complexity of DSBs is a crucial factor for the activation of ATR pathway for G2/M checkpoint regulation, and ATM-dependent end resection is not essential for the activation.  相似文献   

17.
Transplantation of bone-marrow derived mesenchymal stem cells (MSCs) has potential therapeutic effects on cardiac muscle repair. However, the underlying mechanism remains not completely clarified. Here we show that transplantation of MSCs significantly increased local recruitment of macrophages to facilitate cardiac muscle repair. MSCs-induced recovery of cardiac function and attenuation of fibrosis after injury were all abolished by either impaired macrophage infiltration, or by MSCs depletion after macrophage recruitment. However, angiogenesis seemed to be only affected by depletion of macrophages, but not by depletion of MSCs, suggesting that macrophages are responsible for the augmented angiogenesis after MSCs transplantation, while MSCs do not directly contribute to angiogenesis in the functional cardiac repair. Moreover, high level of transforming growth factor β 1 (TGFβ1) was detected in macrophages and high level of BMP7 was detected in MSCs, suggesting that MSCs not only may recruit macrophages to enhance angiogenesis to promote regeneration, but also may secrete BMP7 to contradict the fibrogenic effect of TGFβ1 by macrophages. Our study thus sheds new insight on the interaction of MSCs and macrophages in a functional cardiac repair triggered by MSCs transplantation.  相似文献   

18.
A causal role for mitochondrial dysfunction in mammalian aging is supported by recent studies of the mtDNA mutator mouse (“PolG” mouse), which harbors a defect in the proofreading-exonuclease activity of mitochondrial DNA polymerase gamma. These mice exhibit accelerated aging phenotypes characteristic of human aging, including systemic mitochondrial dysfunction, exercise intolerance, alopecia and graying of hair, curvature of the spine, and premature mortality. While mitochondrial dysfunction has been shown to cause increased oxidative stress in many systems, several groups have suggested that PolG mutator mice show no markers of oxidative damage. These mice have been presented as proof that mitochondrial dysfunction is sufficient to accelerate aging without oxidative stress. In this study, by normalizing to mitochondrial content in enriched fractions we detected increased oxidative modification of protein and DNA in PolG skeletal muscle mitochondria. We separately developed novel methods that allow simultaneous direct measurement of mtDNA replication defects and oxidative damage. Using this approach, we find evidence that suggests PolG muscle mtDNA is indeed oxidatively damaged. We also observed a significant decrease in antioxidants and expression of mitochondrial biogenesis pathway components and DNA repair enzymes in these mice, indicating an association of maladaptive gene expression with the phenotypes observed in PolG mice. Together, these findings demonstrate the presence of oxidative damage associated with the premature aging-like phenotypes induced by mitochondrial dysfunction.  相似文献   

19.
20.
Chronic exposure to arsenic, most often through contaminated drinking water, has been linked to several types of cancer in humans, including skin and lung cancer. However, the mechanisms underlying its role in causing cancer are not well understood. There is evidence that exposure to arsenic can enhance the carcinogenicity of UV light in inducing skin cancers and may enhance the carcinogenicity of tobacco smoke in inducing lung cancers. The nucleotide excision repair (NER) pathway removes different types of DNA damage including those produced by UV light and components of tobacco smoke. The aim of the present study was to investigate the effect of sodium arsenite on the NER pathway in human lung fibroblasts (IMR-90 cells) and primary mouse keratinocytes. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts (6-4 PP) and cyclobutane pyrimidine dimers (CPDs). We find a concentration-dependent inhibition of the removal of 6-4 PPs and CPDs in both cell types treated with arsenite. Treatment of both cell types with arsenite resulted in a significant reduction in the abundance of XPC, a protein that is critical for DNA damage recognition in NER. The abundance of RNA expressed from several key NER genes was also significantly reduced by treatment of IMR-90 cells with arsenite. Finally, treatment of IMR-90 cells with MG-132 abrogated the reduction in XPC protein, suggesting an involvement of the proteasome in the reduction of XPC protein produced by treatment of cells with arsenic. The inhibition of NER by arsenic may reflect one mechanism underlying the role of arsenic exposure in enhancing cigarette smoke-induced lung carcinogenesis and UV light-induced skin cancer, and it may provide some insights into the emergence of arsenic trioxide as a chemotherapeutic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号