首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome‐wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis. Relative quantification of the changes in the lysine acetylation levels was determined on a proteome‐wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1‐like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar‐localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss‐of‐function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low‐light conditions.  相似文献   

2.
Histone acetylation levels are determined by the action of histone acetyltransferases and histone deacetylases (HDACs). Sequence similarity and profile searching tools were used to analyze the genome sequence of rice (Oryzae sativa) for genes encoding HDAC proteins. The rice RPD3/HDA1-family HDAC proteins can be divided into four classes based on sequence similarity and phylogenetic analysis of sequences obtained from the rice genome. The spatial expression pattern of rice HDACs genes indicated that some HDAC genes have different expression profiles. Furthermore, our analysis indicated that expression of HDA705, HDT701, and HDT702 could be affected by salicylic acid, jasmonic acid or abscisic acid. Expression of HDA714, SRT702, and SRT701 could be modulated by abiotic stresses, such as cold, mannitol and salt. These results indicate that different HDAC genes have distinct expression patterns and members of rice HDAC families may be involved in plant response to environmental stresses.  相似文献   

3.
Lysine acetylation (Kac) is an important protein post‐translational modification in both eukaryotes and prokaryotes. Herein, we report the results of a global proteome analysis of Kac and its diverse functions in rice (Oryza sativa). We identified 1353 Kac sites in 866 proteins in rice seedlings. A total of 11 Kac motifs are conserved, and 45% of the identified proteins are localized to the chloroplast. Among all acetylated proteins, 38 Kac sites are combined in core histones. Bioinformatics analysis revealed that Kac occurs on a diverse range of proteins involved in a wide variety of biological processes, especially photosynthesis. Protein–protein interaction networks of the identified proteins provided further evidence that Kac contributes to a wide range of regulatory functions. Furthermore, we demonstrated that the acetylation level of histone H3 (lysine 27 and 36) is increased in response to cold stress. In summary, our approach comprehensively profiles the regulatory roles of Kac in the growth and development of rice.  相似文献   

4.
The acetylation level of histones on lysine residues regulated by histone acetyltransferases and histone deacetylases plays an important but under‐studied role in the control of gene expression in plants. With the aim of characterizing the Arabidopsis RPD3/HDA1 family histone deacetylase HDA5, we present evidence showing that HDA5 displays deacetylase activity. Mutants defective in the expression of HDA5 displayed a late‐flowering phenotype. Expression of the flowering repressor genes FLC and MAF1 was up‐regulated in hda5 mutants. Furthermore, the gene activation markers, histone H3 acetylation and H3K4 trimethylation on FLC and MAF1 chromatin were increased in hda51 mutants. Chromatin immunoprecipitation analysis showed that HDA5 binds to the chromatin of FLC and MAF1. Bimolecular fluorescence complementation assays and co‐immunoprecipitation assays showed that HDA5 interacts with FVE, FLD and HDA6, indicating that these proteins are present in a protein complex involved in the regulation of flowering time. Comparing gene expression profiles of hda5 and hda6 mutants by RNA‐seq revealed that HDA5 and HDA6 co‐regulate gene expression in multiple development processes and pathways.  相似文献   

5.
6.
7.
BackgroundDNA and chromatin modifications are critical mediators in the establishment and maintenance of cell type-specific gene expression patterns that constitute cellular identities. One type of modification, the acetylation and deacetylation of histones, occurs reversibly on lysine ε-NH3+ groups of core histones via histone acetyl transferases (HAT) and histone deacetylases (HDAC). Hyperacetylated histones are associated with active chromatin domains, whereas hypoacetylated histones are enriched in non-transcribed loci.MethodsWe analyzed global histone H4 acetylation and HDAC activity levels in mature lineage marker-positive (Lin+) and progenitor lineage marker-negative (Lin?) hematopoietic cells from murine bone marrow (BM). In addition, we studied the effects of HDAC inhibition on hematopoietic progenitor/stem cell (HPSC) frequencies, cell survival, differentiation and HoxB4 dependence.ResultsWe observed that Lin? and Lin+ cells do not differ in global histone H4 acetylation but in HDAC activity levels. Further, we saw that augmented histone acetylation achieved by transient Trichostatin A (TSA) treatment increased the frequency of cells with HPSC immunophenotype and function in the heterogeneous pool of BM cells. Induction of histone hyperacetylation in differentiated BM cells was detrimental, as evidenced by preferential death of mature BM cells upon HDAC inhibition. Finally, TSA treatment of BM cells from HoxB4?/? mice revealed that the HDAC inhibitor-mediated increase in HPSC frequencies was independent of HoxB4.ConclusionsOverall, these data indicate the potential of chromatin modifications for the regulation of HPSC. Chromatin-modifying agents may provide potential strategies for ex vivo expansion of HPSC.  相似文献   

8.
Histone deacetylases (HDAC) are important in plant gene expression. Here we show that the expression of rice HDAC genes is both tissue/organ-specific, and most of them are responsive to drought or salt stresses. Over-expression of several rice HDACs did not produce any visible phenotype, whereas down-regulation of a few HDAC genes affected different developmental aspects. Specifically, down-regulation of HDA703 by amiRNA reduced rice peduncle elongation and fertility, while inactivation of a closely related homolog HDA710 by RNAi affected vegetative growth. HDA704 RNAi altered plant height and flag leaf morphology. Down-regulation of HDT702 led to the production of narrowed leaves and stems. These data suggest that rice HDAC genes may have divergent developmental functions compared with closely related homologs in Arabidopsis.  相似文献   

9.
10.
11.
Inherited retinal degenerations, collectively termed retinitis pigmentosa (RP), constitute one of the leading causes of blindness in the developed world. RP is at present untreatable and the underlying neurodegenerative mechanisms are unknown, even though the genetic causes are often established. Acetylation and deacetylation of histones, carried out by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, affects cellular division, differentiation, death and survival. We found acetylation of histones and probably other proteins to be dramatically reduced in degenerating photoreceptors in the rd1 human homologous mouse model for RP. Using a custom developed in situ HDAC activity assay, we show that overactivation of HDAC classes I/II temporally precedes photoreceptor degeneration. Moreover, pharmacological inhibition of HDACs I/II activity in rd1 organotypic retinal explants decreased activity of poly-ADP-ribose-polymerase and strongly reduced photoreceptor cell death. These findings highlight the importance of protein acetylation for photoreceptor cell death and survival and propose certain HDAC classes as novel targets for the pharmacological intervention in RP.  相似文献   

12.
13.
Regulation of protein turnover by acetyltransferases and deacetylases   总被引:3,自引:0,他引:3  
  相似文献   

14.
15.
16.
17.
Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are two counteracting enzyme families whose enzymatic activity controls the acetylation state of protein lysine residues, notably those contained in the N-terminal extensions of the core histones. Acetylation of histones affects gene expression through its influence on chromatin conformation. In addition, several non-histone proteins are regulated in their stability or biological function by the acetylation state of specific lysine residues. HDACs intervene in a multitude of biological processes and are part of a multiprotein family in which each member has its specialized functions. In addition, HDAC activity is tightly controlled through targeted recruitment, protein-protein interactions and post-translational modifications. Control of cell cycle progression, cell survival and differentiation are among the most important roles of these enzymes. Since these processes are affected by malignant transformation, HDAC inhibitors were developed as antineoplastic drugs and are showing encouraging efficacy in cancer patients.  相似文献   

18.
Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes. Many telomere-binding proteins bind to telomeric repeat sequences and further generate T-loops in animals. However, it is not clear if they regulate telomere organization using epigenetic mechanisms and how the epigenetic molecules are involved in regulating the telomeres. Here, we show direct interactions between the telomere-binding protein, AtTRB2 and histone deacetylases, HDT4 and HDA6, in vitro and in vivo. AtTRB2 mediates the associations of HDT4 and HDA6 with telomeric repeats. Telomere elongation is found in AtTRB2, HDT4 and HDA6 mutants over generations, but also in met1 and cmt3 DNA methyltransferases mutants. We also characterized HDT4 as an Arabidopsis H3K27 histone deacetylase. HDT4 binds to acetylated peptides at residue K27 of histone H3 in vitro, and deacetylates this residue in vivo. Our results suggest that AtTRB2 also has a role in the regulation of telomeric chromatin as a possible scaffold protein for recruiting the epigenetic regulators in Arabidopsis, in addition to its telomere binding and length regulation activity. Our data provide evidences that epigenetic molecules associate with telomeres by direct physical interaction with telomere-binding proteins and further regulate homeostasis of telomeres in Arabidopsis thaliana.  相似文献   

19.
The histone deacetylases HDAC1 and HDAC2 remove acetyl moieties from lysine residues of histones and other proteins and are important regulators of gene expression. By deleting different combinations of Hdac1 and Hdac2 alleles in the epidermis, we reveal a dosage‐dependent effect of HDAC1/HDAC2 activity on epidermal proliferation and differentiation. Conditional ablation of either HDAC1 or HDAC2 in the epidermis leads to no obvious phenotype due to compensation by the upregulated paralogue. Strikingly, deletion of a single Hdac2 allele in HDAC1 knockout mice results in severe epidermal defects, including alopecia, hyperkeratosis, hyperproliferation and spontaneous tumour formation. These mice display impaired Sin3A co‐repressor complex function, increased levels of c‐Myc protein, p53 expression and apoptosis in hair follicles (HFs) and misregulation of HF bulge stem cells. Surprisingly, ablation of HDAC1 but not HDAC2 in a skin tumour model leads to accelerated tumour development. Our data reveal a crucial function of HDAC1/HDAC2 in the control of lineage specificity and a novel role of HDAC1 as a tumour suppressor in the epidermis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号