首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local adaptation to the littoral and pelagic zones in two cichlid haplochromine fish species from Lake Kivu was investigated using morphometrics. Cranial variation and inferred jaw mechanics in both sexes of the two species across the two habitat types were quantified and compared. Comparisons of littoral versus pelagic populations revealed habitat‐specific differences in the shape of the feeding apparatus. Also, kinematic transmission of the anterior jaw four‐bar linkage that promotes greater jaw protrusion was higher in the pelagic zone than in the littoral zone for both species. Inferred bite force was likewise higher in pelagic zone fish. There were also sex‐specific differences in craniofacial morphology as males exhibited longer heads than females in both habitats. As has been described for other cichlids in the East African Great Lakes, local adaptation to trophic resources in the littoral and pelagic habitats characterizes these two Lake Kivu cichlids. Similar studies involving other types of the Lake Kivu fishes are recommended to test the evidence of the observed trophic patterns and their genetic basis of divergences.  相似文献   

2.
In Lake Tanganyika, several lineages of cichlids have diversified into 200 species. Tribe Tropheini contains the greatest richness of herbivorous species that are classified into four ecomorphs: grazers, browsers, suckers, and pickers. All of these ecomorphs coexist on littoral rocky shores. To reveal the differences among species within ecomorphs, we analysed fish shape and functional morphology related to feeding habits, using geometric morphometrics, and measured intestine length. Furthermore, we tested the relationship between genetic and morphological distances. As a result, diversities of functional morphology among ecomorphs, and among species within ecomorphs, were revealed. In grazers, morphological diversity was greatest in jaws and the opening direction of mouth, suggesting that these species have adapted to feed on various substrata. In browsers, intestine length varied among species, indicating that this ecomorph consists of species with various specializations in herbivory. Morphological divergence was found only in the mandible and occlusal facet in grazers. No clear relation was found between morphological and phylogenetic distances in browsers, which are a polyphyletic group, indicating that their traits were acquired by convergence in multiple lineages. Our data suggest that the observed morphological variation among species enable sympatric species to separate their feeding niches.  相似文献   

3.
Studying parallel evolution (repeated, independent evolution of similar phenotypes in similar environments) is a powerful tool to understand environment‐dependent selective forces. Surface‐dwelling species that repeatedly and independently colonized caves provide unique models for such studies. The primarily surface‐dwelling Asellus aquaticus species complex is a good candidate to carry out such research, because it colonized several caves in Europe. By comparing 17 functional morphological traits between six cave and nine surface populations of the A. aquaticus species complex, we investigated population divergence in morphology and sexual dimorphism. We found habitat‐dependent population divergence in 10 out of 17 traits, likely reflecting habitat‐driven changes in selection acting on sensory systems, feeding, grooming, and antipredator mechanisms. Sexual dimorphism was present in 15 traits, explained by sexual selection acting on male traits important in male–male agonistic behavior or mate guarding and fecundity selection acting on female traits affecting offspring number and nursing. In eight traits, the degree of sexual dimorphism was habitat dependent. We conclude that cave‐related morphological changes are highly trait‐ and function‐specific and that the strength of sexual/fecundity selection strongly differs between cave and surface habitats. The considerable population variation within habitat type warrants further studies to reveal cave‐specific adaptations besides the parallel patterns.  相似文献   

4.
Color patterns are often linked to the behavioral and morphological characteristics of an animal, contributing to the effectiveness of such patterns as antipredatory strategies. Species‐rich adaptive radiations, such as the freshwater fish family Cichlidae, provide an exciting opportunity to study trait correlations at a macroevolutionary scale. Cichlids are also well known for their diversity and repeated evolution of color patterns and body morphology. To study the evolutionary dynamics between color patterns and body morphology, we used an extensive dataset of 461 species. A phylogenetic supertree of these species shows that stripe patterns evolved ~70 times independently and were lost again ~30 times. Moreover, stripe patterns show strong signs of correlated evolution with body elongation, suggesting that the stripes’ effectiveness as antipredatory strategy might differ depending on the body shape. Using pedigree‐based analyses, we show that stripes and body elongation segregate independently, indicating that the two traits are not genetically linked. Their correlation in nature is therefore likely maintained by correlational selection. Lastly, by performing a mate preference assay using a striped CRISPR‐Cas9 mutant of a nonstriped species, we show that females do not differentiate between striped CRISPR mutant males and nonstriped wild‐type males, suggesting that these patterns might be less important for species recognition and mate choice. In summary, our study suggests that the massive rates of repeated evolution of stripe patterns are shaped by correlational selection with body elongation, but not by sexual selection.  相似文献   

5.
Human disturbance directly affects animal populations and communities, but indirect effects of disturbance on species behaviors are less well understood. For instance, disturbance may alter predator activity and cause knock‐on effects to predator‐sensitive foraging in prey. Camera traps provide an emerging opportunity to investigate such disturbance‐mediated impacts to animal behaviors across multiple scales. We used camera trap data to test predictions about predator‐sensitive behavior in three ungulate species (caribou Rangifer tarandus; white‐tailed deer, Odocoileus virginianus; moose, Alces alces) across two western boreal forest landscapes varying in disturbance. We quantified behavior as the number of camera trap photos per detection event and tested its relationship to inferred human‐mediated predation risk between a landscape with greater industrial disturbance and predator activity and a “control” landscape with lower human and predator activity. We also assessed the finer‐scale influence on behavior of variation in predation risk (relative to habitat variation) across camera sites within the more disturbed landscape. We predicted that animals in areas with greater predation risk (e.g., more wolf activity, less cover) would travel faster past cameras and generate fewer photos per detection event, while animals in areas with less predation risk would linger (rest, forage, investigate), generating more photos per event. Our predictions were supported at the landscape‐level, as caribou and moose had more photos per event in the control landscape where disturbance‐mediated predation risk was lower. At a finer‐scale within the disturbed landscape, no prey species showed a significant behavioral response to wolf activity, but the number of photos per event decreased for white‐tailed deer with increasing line of sight (m) along seismic lines (i.e., decreasing visual cover), consistent with a predator‐sensitive response. The presence of juveniles was associated with shorter behavioral events for caribou and moose, suggesting greater predator sensitivity for females with calves. Only moose demonstrated a positive behavioral association (i.e., longer events) with vegetation productivity (16‐day NDVI), suggesting that for other species bottom‐up influences of forage availability were generally weaker than top‐down influences from predation risk. Behavioral insights can be gleaned from camera trap surveys and provide complementary information about animal responses to predation risk, and thus about the indirect impacts of human disturbances on predator–prey interactions.  相似文献   

6.
This study of Astragalus holmgreniorum examines its adaptations to the warm desert environment and whether these adaptations will enable it to persist. Its spring ephemeral hemicryptophyte life‐history strategy is unusual in warm deserts. We used data from a 22‐year demographic study supplemented with reproductive output, seed bank, and germinant survival studies to examine the population dynamics of this species using discrete‐time stochastic matrix modeling. The model showed that A. holmgreniorum is likely to persist in the warm desert in spite of high dormant‐season mortality. It relies on a stochastically varying environment with high inter‐annual variation in precipitation for persistence, but without a long‐lived seed bank, environmental stochasticity confers no advantage. Episodic high reproductive output and frequent seedling recruitment along with a persistent seed bank are adaptations that facilitate its survival. These adaptations place its life‐history strategy further along the spectrum from “slower” to “faster” relative to other perennial spring ephemerals. The extinction risk for small populations is relatively high even though mean λ s > 1 because of the high variance in year quality. This risk is also strongly dependent on seed bank starting values, creating a moving window of extinction risk that varies with population size through time. Astragalus holmgreniorum life‐history strategy combines the perennial spring ephemeral life form with features more characteristic of desert annuals. These adaptations permit persistence in the warm desert environment. A promising conclusion is that new populations of this endangered species can likely be established through direct seeding.  相似文献   

7.
Synopsis The functional morphology of the jaws of six species of butterflyfishes was investigated and related to their feeding behaviors. Utilizing observations and measurements of fresh-killed specimens as well as scanning electron microscopy of their dentitions, interspecific differences in the size, shape, orientation of the mouth, dentition, degree and function of jaw protrusion were related to their different feeding behaviors. The jaws of the six species showed a variety of adaptations for feeding on or over the reef as well as a repertoire of modulated jaw movements hitherto unnoticed in many studies. This radiation in morphologies was believed to be due to relatively simple changes of a few structural elements, changes that could occur relatively rapidly in the evolutionary time scale. The benefit of naturalistic observations in such functional morphological studies was emphasized.  相似文献   

8.
Acanthostega is one of the earliest and most primitive limbed vertebrates. Its numerous fish-like features indicate a primarily aquatic lifestyle, yet cranial suture morphology suggests that its skull is more similar to those of terrestrial taxa. Here, we apply geometric morphometrics and two-dimensional finite-element analysis to the lower jaws of Acanthostega and 22 other tetrapodomorph taxa in order to quantify morphological and functional changes across the fish–tetrapod transition. The jaw of Acanthostega is similar to that of certain tetrapodomorph fish and transitional Devonian taxa both morphologically (as indicated by its proximity to those taxa in morphospace) and functionally (as indicated by the distribution of stress values and relative magnitude of bite force). Our results suggest a slow tempo of morphological and biomechanical changes in the transition from Devonian tetrapod jaws to aquatic/semi-aquatic Carboniferous tetrapod jaws. We conclude that Acanthostega retained a primitively aquatic lifestyle and did not possess cranial adaptations for terrestrial feeding.  相似文献   

9.
Haplochromis pharyngalis and Haplochromis petronius, two endemic cichlids from the Lake Edward system (Uganda, Democratic Republic of the Congo), are very similar in general morphology but have been reported to differ in pharyngeal jaw morphology and distribution. This study analysed 51 morphometrics and various qualitative characteristics of 48 specimens from different localities. The morphological traits of both species strongly overlap, and differences in the pharyngeal jaw morphology correspond to a geographic morphocline. We conclude that all specimens belong to one valid species, H. pharyngalis, and consider H. petronius to be a synonym.  相似文献   

10.
Predator‐inducible defenses constitute a widespread form of adaptive phenotypic plasticity, and such defenses have recently been suggested linked with the neuroendocrine system. The neuroendocrine system is a target of endocrine disruptors, such as psychoactive pharmaceuticals, which are common aquatic contaminants. We hypothesized that exposure to an antidepressant pollutant, fluoxetine, influences the physiological stress response in our model species, crucian carp, affecting its behavioral and morphological responses to predation threat. We examined short‐ and long‐term effects of fluoxetine and predator exposure on behavior and morphology in crucian carp. Seventeen days of exposure to a high dose of fluoxetine (100 µg/L) resulted in a shyer phenotype, regardless of the presence/absence of a pike predator, but this effect disappeared after long‐term exposure. Fluoxetine effects on morphological plasticity were context‐dependent as a low dose (1 µg/L) only influenced crucian carp body shape in pike presence. A high dose of fluoxetine strongly influenced body shape regardless of predator treatment. Our results highlight that environmental pollution by pharmaceuticals could disrupt physiological regulation of ecologically important inducible defenses.  相似文献   

11.
Lake Edward, East Africa, harbours a largely understudied assemblage of haplochromine cichlids that displays a range of adaptions to various specialised trophic niches. In this system, we discovered specimens of Haplochromis with morphologies similar to those of oral-mollusc shellers from Lake Victoria. These morphologies are characterised by short oral jaws with stout teeth that are used either to crush molluscs or to grab the soft bodies of snails and wrench them out of their shells. A morphometric study on 47 specimens from Lake Edward revealed the presence of three new species with an oral-shelling morphology: Haplochromis concilians sp. nov., H. erutus sp. nov. and H. planus sp. nov. All three species are formally described. Stomach-content observations confirmed an opportunistic oral-shelling ecology for H. concilians sp. nov. and H. erutus sp. nov. Within H. planus sp. nov., only large specimens displayed a specialised oral-shelling morphology, but their stomachs were nearly empty, while small specimens consumed mainly Ostracoda and Hydrachnidia. Remarkably, the three species differed considerably in morphology from each other, but they each resembled oral-sheller species from Lake Victoria.  相似文献   

12.
Emerging technologies based on the detection of electro‐magnetic energy offer promising opportunities for sampling biodiversity. We exploit their potential by showing here how they can be used in bat point counts—a novel method to sample flying bats—to overcome shortcomings of traditional sampling methods, and to maximize sampling coverage and taxonomic resolution of this elusive taxon with minimal sampling bias. We conducted bat point counts with a sampling rig combining a thermal scope to detect bats, an ultrasound recorder to obtain echolocation calls, and a near‐infrared camera to capture bat morphology. We identified bats with a dedicated identification key combining acoustic and morphological features, and compared bat point counts with the standard bat sampling methods of mist‐netting and automated ultrasound recording in three oil palm plantation sites in Indonesia, over nine survey nights. Based on rarefaction and extrapolation sampling curves, bat point counts were similarly effective but more time‐efficient than the established methods for sampling the oil palm species pool in our study. Point counts sampled species that tend to avoid nets and those that are not echolocating, and thus cannot be detected acoustically. We identified some bat sonotypes with near‐infrared imagery, and bat point counts revealed strong sampling biases in previous studies using capture‐based methods, suggesting similar biases in other regions might exist. Our method should be tested in a wider range of habitats and regions to assess its performance. However, while capture‐based methods allow to identify bats with absolute and internal morphometry, and unattended ultrasound recorders can effectively sample echolocating bats, bat point counts are a promising, non‐invasive, and potentially competitive new tool for sampling all flying bats without bias and observing their behavior in the wild.  相似文献   

13.
Cooperative breeding, which is commonly characterized by nonbreeding individuals that assist others with reproduction, is common in avian species. However, few accounts have been reported in Charadriiformes, particularly island‐nesting species. We present incidental observations of cooperative breeding behaviors in the Hawaiian Stilt (Himantopus mexicanus knudseni), an endangered subspecies of the Black‐necked Stilt (Himantopus mexicanus), during the 2012–2020 nesting seasons on the Hawaiian islands of O‘ahu and Moloka‘i. We describe two different behaviors that are indicative of cooperative breeding: (a) egg incubation by multiple adults; (b) helpers‐at‐the‐nest, whereby juveniles delay dispersal and reproduction to assist parents and siblings with reproduction. These observations are the first published accounts of cooperative breeding in this subspecies and merit further investigation, as cooperative breeding may improve population viability of the endangered, endemic Hawaiian Stilt.  相似文献   

14.
Blue Catfish Ictalurus furcatus are an invasive, yet economically important species in the Chesapeake Bay. However, their impact on the trophic ecology of this system is not well understood. In order to provide in‐depth analysis of predation by Blue Catfish, we identified prey items using high‐throughput DNA sequencing (HTS) of entire gastrointestinal tracts from 134 samples using two genetic markers, mitochondrial cytochrome c oxidase I (COI) and the nuclear 18S ribosomal RNA gene. We compared our HTS results to a more traditional “hybrid” approach that coupled morphological identification with DNA barcoding. The hybrid study was conducted on additional Blue Catfish samples (n = 617 stomachs) collected from the same location and season in the previous year. Taxonomic representation with HTS vastly surpassed that achieved with the hybrid methodology in Blue Catfish. Significantly, our HTS study identified several instances of at‐risk and invasive species consumption not identified using the hybrid method, supporting the hypothesis that previous studies using morphological methods may greatly underestimate consumption of critical species. Finally, we report the novel finding that Blue Catfish diet diversity inversely correlates to daily flow rates, perhaps due to higher mobility and prey‐seeking behaviors exhibited during lower flow.  相似文献   

15.
In nature, nothing is wasted, not even waste. Dung, composed of metabolic trash and leftovers of food, is a high‐quality resource and the object of fierce competition. Over 800 dung beetle species (Scarabaeinae) compete in the South African dung habitat and more than 100 species can colonize a single dung pat. To coexist in the same space, using the same food, beetles divide the day between them. However, detailed diel activity periods and associated morphological adaptations have been largely overlooked in these dung‐loving insects. To address this, we used a high‐frequency trapping design to establish the diel activity period of 44 dung beetle species in their South Africa communities. This allowed us to conclude that the dung beetles show a highly refined temporal partitioning strategy, with differences in peak of activity even within the diurnal, crepuscular, and nocturnal guilds, independent of nesting behavior and taxonomic classification. We further analyzed differences in eye and body size of our 44 model species and describe their variability in external eye morphology. In general, nocturnal species are bigger than crepuscular and diurnal species, and as expected, the absolute and relative eye size is greatest in nocturnal species, followed by crepuscular and then diurnal species. A more surprising finding was that corneal structure (smooth or facetted) is influenced by the activity period of the species, appearing flat in the nocturnal species and highly curved in the diurnal species. The role of the canthus—a cuticular structure that partially or completely divides the dung beetle eye into dorsal and ventral parts—remains a mystery, but the large number of species investigated in this study nevertheless allowed us to reject any correlation between its presence and the nesting behavior or time of activity of the beetles.  相似文献   

16.
Diffusible iodine‐based contrast‐enhanced computed tomography (diceCT) visualizes soft tissue from micro‐CT (µCT) scans of specimens to uncover internal features and natural history information without incurring physical damage via dissection. Unlike hard‐tissue imaging, taxonomic sampling within diceCT datasets is currently limited. To initiate best practices for diceCT in a nonmodel group, we outline a guide for staining and high‐throughput µCT scanning in snakes. We scanned the entire body and one region of interest (i.e., head) for 23 specimens representing 23 species from the clades Aniliidae, Dipsadinae, Colubrinae, Elapidae, Lamprophiidae, and Viperidae. We generated 82 scans that include 1.25% Lugol''s iodine stained (soft tissue) and unstained (skeletal) data for each specimen. We found that duration of optimal staining time increased linearly with body size; head radius was the best indicator. Postreconstruction of scans, optimal staining was evident by evenly distributed grayscale values and clear differentiation among soft‐tissue anatomy. Under and over stained specimens produced poor contrast among soft tissues, which was often exacerbated by user bias during “digital dissections” (i.e., segmentation). Regardless, all scans produced usable data from which we assessed a range of downstream analytical applications within ecology and evolution (e.g., predator‐prey interactions, life history, and morphological evolution). Ethanol destaining reversed the known effects of iodine on the exterior appearance of physical specimens, but required substantially more time than reported for other destaining methods. We discuss the feasibility of implementing diceCT techniques for a new user, including approximate financial and temporal commitments, required facilities, and potential effects of staining on specimens. We present the first high‐throughput workflow for full‐body skeletal and diceCT scanning in snakes, which can be generalized to any elongate vertebrates, and increases publicly available diceCT scans for reptiles by an order of magnitude.  相似文献   

17.
It has been suggested that a trade‐off between cognitive capacity and developmental costs may drive brain size and morphology across fish species, but this pattern is less well explored at the intraspecific level. Physical habitat complexity has been proposed as a key selection pressure on cognitive capacity that shapes brain morphology of fishes. In this study, we compared brain morphology of brown trout, Salmo trutta, from stream, lake, and hatchery environments, which generally differ in physical complexity ranging from low habitat complexity in the hatchery to high habitat complexity in streams and intermediate complexity in lakes. We found that brain size, and the size of optic tectum and telencephalon differed across the three habitats, both being largest in lake fish with a tendency to be smaller in the stream compared to hatchery fish. Therefore, our findings do not support the hypothesis that in brown trout the volume of brain and its regions important for navigation and decision‐making increases in physically complex habitats. We suggest that the observed differences in brain size might be associated with diet quality and habitat‐specific behavioral adaptations rather than physical habitat complexity.  相似文献   

18.
19.
Acute exposure to warming temperatures increases minimum energetic requirements in ectotherms. However, over and within multiple generations, increased temperatures may cause plastic and evolved changes that modify the temperature sensitivity of energy demand and alter individual behaviors. Here, we aimed to test whether populations recently exposed to geothermally elevated temperatures express an altered temperature sensitivity of metabolism and behavior. We expected that long‐term exposure to warming would moderate metabolic rate, reducing the temperature sensitivity of metabolism, with concomitant reductions in boldness and activity. We compared the temperature sensitivity of metabolic rate (acclimation at 20 vs. 30°C) and allometric slopes of routine, standard, and maximum metabolic rates, in addition to boldness and activity behaviors, across eight recently divergent populations of a widespread fish species (Gambusia affinis). Our data reveal that warm‐source populations express a reduced temperature sensitivity of metabolism, with relatively high metabolic rates at cool acclimation temperatures and relatively low metabolic rates at warm acclimation temperatures compared to ambient‐source populations. Allometric scaling of metabolism did not differ with thermal history. Across individuals from all populations combined, higher metabolic rates were associated with higher activity rates at 20°C and bolder behavior at 30°C. However, warm‐source populations displayed relatively bolder behavior at both acclimation temperatures compared to ambient‐source populations, despite their relatively low metabolic rates at warm acclimation temperatures. Overall, our data suggest that in response to warming, multigenerational exposure (e.g., plasticity, adaptation) may not result in trait change directed along a simple “pace‐of‐life syndrome” axis, instead causing relative decreases in metabolism and increases in boldness. Ultimately, our data suggest that multigenerational warming may produce a novel combination of physiological and behavioral traits, with consequences for animal performance in a warming world.  相似文献   

20.
  1. With accelerated land conversion and global heating at northern latitudes, it becomes crucial to understand, how life histories of animals in extreme environments adapt to these changes. Animals may either adapt by adjusting foraging behavior or through physiological responses, including adjusting their energy metabolism or both. Until now, it has been difficult to study such adaptations in free‐ranging animals due to methodological constraints that prevent extensive spatiotemporal coverage of ecological and physiological data.
  2. Through a novel approach of combining DNA‐metabarcoding and nuclear magnetic resonance (NMR)‐based metabolomics, we aim to elucidate the links between diets and metabolism in Scandinavian moose Alces alces over three biogeographic zones using a unique dataset of 265 marked individuals.
  3. Based on 17 diet items, we identified four different classes of diet types that match browse species availability in respective ecoregions in northern Sweden. Individuals in the boreal zone consumed predominantly pine and had the least diverse diets, while individuals with highest diet diversity occurred in the coastal areas. Males exhibited lower average diet diversity than females.
  4. We identified several molecular markers indicating metabolic constraints linked to diet constraints in terms of food availability during winter. While animals consuming pine had higher lipid, phospocholine, and glycerophosphocholine concentrations in their serum than other diet types, birch‐ and willow/aspen‐rich diets exhibit elevated concentrations of several amino acids. The individuals with highest diet diversity had increased levels of ketone bodies, indicating extensive periods of starvation for these individuals.
  5. Our results show how the adaptive capacity of moose at the eco‐physiological level varies over a large eco‐geographic scale and how it responds to land use pressures. In light of extensive ongoing climate and land use changes, these findings pave the way for future scenario building for animal adaptive capacity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号