首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects.

Methodology/Principal Findings

We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%).

Conclusions/Significance

Our results suggest that GPS telemetry is reliably applicable to riparian and even diving freshwater animals. They also highlight the need, in GPS wildlife studies, for performing site-specific pilot studies on GPS functioning as well as for taking into account eventual spatial and temporal correlation of location estimates. The limited price, small dimensions, and high performance of the device presented here make it a useful and cost-effective tool for studies on otters and other aquatic or terrestrial medium-to-large-sized animals.  相似文献   

2.
Understanding how an animal utilises its surroundings requires its movements through space to be described accurately. Satellite telemetry is the only means of acquiring movement data for many species however data are prone to varying amounts of spatial error; the recent application of state-space models (SSMs) to the location estimation problem have provided a means to incorporate spatial errors when characterising animal movements. The predominant platform for collecting satellite telemetry data on free-ranging animals, Service Argos, recently provided an alternative Doppler location estimation algorithm that is purported to be more accurate and generate a greater number of locations that its predecessor. We provide a comprehensive assessment of this new estimation process performance on data from free-ranging animals relative to concurrently collected Fastloc GPS data. Additionally, we test the efficacy of three readily-available SSM in predicting the movement of two focal animals. Raw Argos location estimates generated by the new algorithm were greatly improved compared to the old system. Approximately twice as many Argos locations were derived compared to GPS on the devices used. Root Mean Square Errors (RMSE) for each optimal SSM were less than 4.25km with some producing RMSE of less than 2.50km. Differences in the biological plausibility of the tracks between the two focal animals used to investigate the utility of SSM highlights the importance of considering animal behaviour in movement studies. The ability to reprocess Argos data collected since 2008 with the new algorithm should permit questions of animal movement to be revisited at a finer resolution.  相似文献   

3.
Abstract: Global Positioning System (GPS) telemetry is used extensively to study animal distribution and resource selection patterns but is susceptible to biases resulting from data omission and spatial inaccuracies. These data errors may cause misinterpretation of wildlife habitat selection or spatial use patterns. We used both stationary test collars and collared free-ranging American black bears (Ursus americanus) to quantify systemic data loss and location error of GPS telemetry in mountainous, old-growth temperate forests of Olympic National Park, Washington, USA. We developed predictive models of environmental factors that influence the probability of obtaining GPS locations and evaluated the ability of weighting factors derived from these models to mitigate data omission biases from collared bears. We also examined the effects of microhabitat on collar fix success rate and examined collar accuracy as related to elevation changes between successive fixes. The probability of collars successfully obtaining location fixes was positively associated with elevation and unobstructed satellite view and was negatively affected by the interaction of overstory canopy and satellite view. Test collars were 33% more successful at acquiring fixes than those on bears. Fix success rates of collared bears varied seasonally and diurnally. Application of weighting factors to individual collared bear fixes recouped only 6% of lost data and failed to reduce seasonal or diurnal variation in fix success, suggesting that variables not included in our model contributed to data loss. Test collars placed to mimic bear bedding sites received 16% fewer fixes than randomly placed collars, indicating that microhabitat selection may contribute to data loss for wildlife equipped with GPS collars. Horizontal collar errors of >800 m occurred when elevation changes between successive fixes were >400 m. We conclude that significant limitations remain in accounting for data loss and error inherent in using GPS telemetry in coniferous forest ecosystems and that, at present, resource selection patterns of large mammals derived from GPS telemetry should be interpreted cautiously.  相似文献   

4.
Global Positioning System (GPS) and very high frequency (VHF) telemetry data redefined the examination of wildlife resource use. Researchers collar animals, relocate those animals over time, and utilize the estimated locations to infer resource use and build predictive models. Precision of these estimated wildlife locations, however, influences the reliability of point-based models with accuracy depending on the interaction between mean telemetry error and how habitat characteristics are mapped (categorical raster resolution and patch size). Telemetry data often foster the assumption that locational error can be ignored without biasing study results. We evaluated the effects of mean telemetry error and categorical raster resolution on the correct characterization of patch use when locational error is ignored. We found that our ability to accurately attribute patch type to an estimated telemetry location improved nonlinearly as patch size increased and mean telemetry error decreased. Furthermore, the exact shape of these relationships was directly influenced by categorical raster resolution. Accuracy ranged from 100% (200-ha patch size, 1- to 5-m telemetry error) to 46% (0.5-ha patch size, 56- to 60-m telemetry error) for 10 m resolution rasters. Accuracy ranged from 99% (200-ha patch size, 1- to 5-m telemetry error) to 57% (0.5-ha patch size, 56- to 60-m telemetry error) for 30-m resolution rasters. When covariate rasters were less resolute (30 m vs. 10 m) estimates for the ignore technique were more accurate at smaller patch sizes. Hence, both fine resolution (10 m) covariate rasters and small patch sizes increased probability of patch misidentification. Our results help frame the scope of ecological inference made from point-based wildlife resource use models. For instance, to make ecological inferences with 90% accuracy at small patch sizes (≤5 ha) mean telemetry error ≤5 m is required for 10-m resolution categorical rasters. To achieve the same inference on 30-m resolution categorical rasters, mean telemetry error ≤10 m is required. We encourage wildlife professionals creating point-based models to assess whether reasonable estimates of resource use can be expected given their telemetry error, covariate raster resolution, and range of patch sizes. © 2011 The Wildlife Society.  相似文献   

5.
Summary .   Missing data, measurement error, and misclassification are three important problems in many research fields, such as epidemiological studies. It is well known that missing data and measurement error in covariates may lead to biased estimation. Misclassification may be considered as a special type of measurement error, for categorical data. Nevertheless, we treat misclassification as a different problem from measurement error because statistical models for them are different. Indeed, in the literature, methods for these three problems were generally proposed separately given that statistical modeling for them are very different. The problem is more challenging in a longitudinal study with nonignorable missing data. In this article, we consider estimation in generalized linear models under these three incomplete data models. We propose a general approach based on expected estimating equations (EEEs) to solve these three incomplete data problems in a unified fashion. This EEE approach can be easily implemented and its asymptotic covariance can be obtained by sandwich estimation. Intensive simulation studies are performed under various incomplete data settings. The proposed method is applied to a longitudinal study of oral bone density in relation to body bone density.  相似文献   

6.
Many publications make use of opportunistic data, such as citizen science observation data, to infer large‐scale properties of species’ distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spatial biases in opportunistic records or using methods that are difficult to generalize. In this study, we explore the biases that exist in opportunistic observations and suggest an approach to correct for them. We first examined the extent of the biases in opportunistic citizen science observations of three wild ungulate species in Norway by comparing them to data from GPS telemetry. We then quantified the extent of the biases by specifying a model of the biases. From the bias model, we sampled available locations within the species’ home range. Along with opportunistic observations, we used the corrected availability locations to estimate a resource selection function (RSF). We tested this method with simulations and empirical datasets for the three species. We compared the results of our correction method to RSFs obtained using opportunistic observations without correction and to RSFs using GPS‐telemetry data. Finally, we compared habitat suitability maps obtained using each of these models. Opportunistic observations are more affected by human access and visibility than locations derived from GPS telemetry. This has consequences for drawing inferences about species’ ecology. Models naïvely using opportunistic observations in habitat‐use studies can result in spurious inferences. However, sampling availability locations based on the spatial biases in opportunistic data improves the estimation of the species’ RSFs and predicted habitat suitability maps in some cases. This study highlights the challenges and opportunities of using opportunistic observations in habitat‐use studies. While our method is not foolproof it is a first step toward unlocking the potential of opportunistic citizen science data for habitat‐use studies.  相似文献   

7.
ABSTRACT Using clusters of locations obtained from Global Positioning System (GPS) telemetry collars to identify predation events may allow more efficient estimation of behavioral predation parameters for the study and management of large carnivore predator-prey systems. Applications of field- and model-based GPS telemetry cluster techniques, however, have met with mixed success. To further evaluate and refine these techniques for cougars (Puma concolor), we used data from visits to 1,735 GPS telemetry clusters, 637 of which were locations where cougars killed prey >8 kg in a multi-prey system in west-central Alberta. We tested 1) whether clusters were reliably created at kill locations, 2) the ability of logistic regression models to identify kill occurrence (prey >8 kg) and multinomial regression models to identify the prey species at a kill cluster, and 3) the duration of monitoring required to accurately estimate kill rate and prey composition. We found that GPS collars programmed to attempt location fixes every 3 hours consistently identified locations where prey >8 kg were handled, and cluster creation was robust to GPS location acquisition failures (poor collar fix success). The logistic regression model was capable of estimating cougar kill rate with a mean 5-fold cross validation error of <10%, provided the appropriate probability cutoff distinguishing kill clusters from non-kill clusters was selected. Logistic models also can be used to direct visits to clusters, reducing field efforts by as much as 25%, while still locating >95% of all kills. The multinomial model overpredicted occurrence of primary prey (deer) in the diet and underpredicted consumption of alternate prey (e.g., elk and moose) by as much as 100%. We conclude that a purely model-based approach should be used cautiously and that field visitation is required to obtain reliable information on species, sex, age, or condition of prey. Ultimately, we recommend a combined approach that involves using models to direct field visitation when estimating behavioral predation parameters. Regardless of the monitoring approach, long continuous monitoring periods (i.e., >100 days of a 180-day period) were necessary to reduce bias and imprecision in kill rate and prey composition estimates.  相似文献   

8.
Documenting local space use of birds that move rapidly, but are too small to carry GPS tags, such as swallows and swifts, can be challenging. For these species, tracking methods such as manual radio‐telemetry and visual observation are either inadequate or labor‐ and time‐intensive. Another option is use of an automated telemetry system, but equipment for such systems can be costly when many receivers are used. Our objective, therefore, was to determine if an automated radio‐telemetry system, consisting of just two receivers, could provide an alternative to manual tracking for gathering data on local space use of six individuals of three species of aerial insectivores, including one Cliff Swallow (Petrochelidon pyrrhonota), one Eastern Phoebe (Sayornis phoebe), and four Barn Swallows (Hirundo rustica). We established automated radio‐telemetry systems at three sites near the city of Peterborough in eastern Ontario, Canada, from May to August 2015. We evaluated the location error of our two‐receiver system using data from moving and stationary test transmitters at known locations, and used telemetry data from the aerial insectivores as a test of the system's ability to track rapidly moving birds under field conditions. Median location error was ~250 m for automated telemetry test locations after filtering. More than 90% of estimated locations had large location errors and were removed from analysis, including all locations > 1 km from receiver stations. Our automated telemetry receivers recorded 17,634 detections of the six radio‐tagged birds. However, filtering removed an average of 89% of bird location estimates, leaving only the Cliff Swallow with enough locations for analysis of space use. Our results demonstrate that a minimal automated radio‐telemetry system can be used to assess local space use by small, highly mobile birds, but the resolution of the data collected using only two receiver stations was coarse and had a limited range. To improve both location accuracy and increase the percentage of usable location estimates collected, we suggest that, in future studies, investigators use receivers that simultaneously record signals detected by all antennas, and use of a minimum of three receiver stations with more antennas at each station.  相似文献   

9.

Background

Movement data are frequently collected using Global Positioning System (GPS) receivers, but recorded GPS locations are subject to errors. While past studies have suggested methods to improve location accuracy, mechanistic movement models utilize distributions of turning angles and directional biases and these data present a new challenge in recognizing and reducing the effect of measurement error.

Methods

I collected locations from a stationary GPS collar, analyzed a probabilistic model and used Monte Carlo simulations to understand how measurement error affects measured turning angles and directional biases.

Results

Results from each of the three methods were in complete agreement: measurement error gives rise to a systematic bias where a stationary animal is most likely to be measured as turning 180° or moving towards a fixed point in space. These spurious effects occur in GPS data when the measured distance between locations is <20 meters.

Conclusions

Measurement error must be considered as a possible cause of 180° turning angles in GPS data. Consequences of failing to account for measurement error are predicting overly tortuous movement, numerous returns to previously visited locations, inaccurately predicting species range, core areas, and the frequency of crossing linear features. By understanding the effect of GPS measurement error, ecologists are able to disregard false signals to more accurately design conservation plans for endangered wildlife.  相似文献   

10.
Abstract: Animal locations estimated by Global Positioning System (GPS) inherently contain errors. Screening procedures used to remove large positional errors often trade data accuracy for data loss. We developed a simple screening method that identifies locations arising from unrealistic movement patterns. When applied to a large data set of moose (Alces alces) locations, our method identified virtually all known errors with minimal loss of data. Thus, our method for screening GPS data improves the quality of data sets and increases the value of such data for research and management.  相似文献   

11.
Animal tracking through Argos satellite telemetry has enormous potential to test hypotheses in animal behavior, evolutionary ecology, or conservation biology. Yet the applicability of this technique cannot be fully assessed because no clear picture exists as to the conditions influencing the accuracy of Argos locations. Latitude, type of environment, and transmitter movement are among the main candidate factors affecting accuracy. A posteriori data filtering can remove “bad” locations, but again testing is still needed to refine filters. First, we evaluate experimentally the accuracy of Argos locations in a polar terrestrial environment (Nunavut, Canada), with both static and mobile transmitters transported by humans and coupled to GPS transmitters. We report static errors among the lowest published. However, the 68th error percentiles of mobile transmitters were 1.7 to 3.8 times greater than those of static transmitters. Second, we test how different filtering methods influence the quality of Argos location datasets. Accuracy of location datasets was best improved when filtering in locations of the best classes (LC3 and 2), while the Douglas Argos filter and a homemade speed filter yielded similar performance while retaining more locations. All filters effectively reduced the 68th error percentiles. Finally, we assess how location error impacted, at six spatial scales, two common estimators of home-range size (a proxy of animal space use behavior synthetizing movements), the minimum convex polygon and the fixed kernel estimator. Location error led to a sometimes dramatic overestimation of home-range size, especially at very local scales. We conclude that Argos telemetry is appropriate to study medium-size terrestrial animals in polar environments, but recommend that location errors are always measured and evaluated against research hypotheses, and that data are always filtered before analysis. How movement speed of transmitters affects location error needs additional research.  相似文献   

12.
Ecological niche models use presence-only data, which is often affected by lack of true absences leading to sampling bias. Over the last decade, there has been an uptick in the integration of occurrence data from global positioning systems telemetry data in ecological niche models and/or species distribution models. These data types can be affected by serial autocorrelation at high relocation frequencies yet have been used in ecological niche models using geographic filters and subsampling techniques. Yet, no study to date has attempted to discern a method to identify the appropriate time interval for a particular species if integrating GPS telemetry occurrence data in a MaxEnt framework. We demonstrate a rigorous spatial technique using a robust contemporary dataset from ocelots (Leopardus pardalis) to assess the appropriate time intervals to use in a species-specific ecological niche model. We assessed a range of daily time intervals (every 0.5, 1–4, 6, 8, and 12 h) commonly used in teresstrial mammalian carnivore studies. We observed the predictive performance of shorter time intervals every 2 h was comparable to much longer intervals every 12 h. These shorter intervals under/overestimated the least amount of data compared to 12 h. This study demonstrates that by accounting for serial autocorrelation and conducting rigorous spatial analyses, scientists can identify the appropriate time interval to integrate GPS telemetry data use in ecological niche models in MaxEnt. These results can also be transferable across highly mobile terrestrial taxa at different spatial scales, which can help inform species management or conservation strategies.  相似文献   

13.
Accuracy of ARGOS Locations of Pinnipeds at-Sea Estimated Using Fastloc GPS   总被引:2,自引:0,他引:2  

Background

ARGOS satellite telemetry is one of the most widely used methods to track the movements of free-ranging marine and terrestrial animals and is fundamental to studies of foraging ecology, migratory behavior and habitat-use. ARGOS location estimates do not include complete error estimations, and for many marine organisms, the most commonly acquired locations (Location Class 0, A, B, or Z) are provided with no declared error estimate.

Methodology/Principal Findings

We compared the accuracy of ARGOS locations to those obtained using Fastloc GPS from the same electronic tags on five species of pinnipeds: 9 California sea lions (Zalophus californianus), 4 Galapagos sea lions (Zalophus wollebaeki), 6 Cape fur seals (Arctocephalus pusillus pusillus), 3 Australian fur seals (A. p. doriferus) and 5 northern elephant seals (Mirounga angustirostris). These species encompass a range of marine habitats (highly pelagic vs coastal), diving behaviors (mean dive durations 2–21 min) and range of latitudes (equator to temperate). A total of 7,318 ARGOS positions and 27,046 GPS positions were collected. Of these, 1,105 ARGOS positions were obtained within five minutes of a GPS position and were used for comparison. The 68th percentile ARGOS location errors as measured in this study were LC-3 0.49 km, LC-2 1.01 km, LC-1 1.20 km, LC-0 4.18 km, LC-A 6.19 km, LC-B 10.28 km.

Conclusions/Significance

The ARGOS errors measured here are greater than those provided by ARGOS, but within the range of other studies. The error was non-normally distributed with each LC highly right-skewed. Locations of species that make short duration dives and spend extended periods on the surface (sea lions and fur seals) had less error than species like elephant seals that spend more time underwater and have shorter surface intervals. Supplemental data (S1) are provided allowing the creation of density distributions that can be used in a variety of filtering algorithms to improve the quality of ARGOS tracking data.  相似文献   

14.
The use of camera traps in ecology helps affordably address questions about the distribution and density of cryptic and mobile species. The random encounter model (REM) is a camera‐trap method that has been developed to estimate population densities using unmarked individuals. However, few studies have evaluated its reliability in the field, especially considering that this method relies on parameters obtained from collared animals (i.e., average speed, in km/h), which can be difficult to acquire at low cost and effort. Our objectives were to (1) assess the reliability of this camera‐trap method and (2) evaluate the influence of parameters coming from different populations on density estimates. We estimated a reference density of black bears (Ursus americanus) in Forillon National Park (Québec, Canada) using a spatial capture–recapture estimator based on hair‐snag stations. We calculated average speed using telemetry data acquired from four different bear populations located outside our study area and estimated densities using the REM. The reference density, determined with a Bayesian spatial capture–recapture model, was 2.87 individuals/10km2 [95% CI: 2.41–3.45], which was slightly lower (although not significatively different) than the different densities estimated using REM (ranging from 4.06–5.38 bears/10km2 depending on the average speed value used). Average speed values obtained from different populations had minor impacts on REM estimates when the difference in average speed between populations was low. Bias in speed values for slow‐moving species had more influence on REM density estimates than for fast‐moving species. We pointed out that a potential overestimation of density occurs when average speed is underestimated, that is, using GPS telemetry locations with large fix‐rate intervals. Our study suggests that REM could be an affordable alternative to conventional spatial capture–recapture, but highlights the need for further research to control for potential bias associated with speed values determined using GPS telemetry data.  相似文献   

15.
Accurately quantifying animals' spatial utilisation is critical for conservation, but has long remained an elusive goal due to technological impediments. The Argos telemetry system has been extensively used to remotely track marine animals, however location estimates are characterised by substantial spatial error. State-space models (SSM) constitute a robust statistical approach to refine Argos tracking data by accounting for observation errors and stochasticity in animal movement. Despite their wide use in ecology, few studies have thoroughly quantified the error associated with SSM predicted locations and no research has assessed their validity for describing animal movement behaviour. We compared home ranges and migratory pathways of seven hawksbill sea turtles (Eretmochelys imbricata) estimated from (a) highly accurate Fastloc GPS data and (b) locations computed using common Argos data analytical approaches. Argos 68(th) percentile error was <1 km for LC 1, 2, and 3 while markedly less accurate (>4 km) for LC ≤ 0. Argos error structure was highly longitudinally skewed and was, for all LC, adequately modelled by a Student's t distribution. Both habitat use and migration routes were best recreated using SSM locations post-processed by re-adding good Argos positions (LC 1, 2 and 3) and filtering terrestrial points (mean distance to migratory tracks ± SD = 2.2 ± 2.4 km; mean home range overlap and error ratio = 92.2% and 285.6 respectively). This parsimonious and objective statistical procedure however still markedly overestimated true home range sizes, especially for animals exhibiting restricted movements. Post-processing SSM locations nonetheless constitutes the best analytical technique for remotely sensed Argos tracking data and we therefore recommend using this approach to rework historical Argos datasets for better estimation of animal spatial utilisation for research and evidence-based conservation purposes.  相似文献   

16.
Qihuang Zhang  Grace Y. Yi 《Biometrics》2023,79(2):1089-1102
Zero-inflated count data arise frequently from genomics studies. Analysis of such data is often based on a mixture model which facilitates excess zeros in combination with a Poisson distribution, and various inference methods have been proposed under such a model. Those analysis procedures, however, are challenged by the presence of measurement error in count responses. In this article, we propose a new measurement error model to describe error-contaminated count data. We show that ignoring the measurement error effects in the analysis may generally lead to invalid inference results, and meanwhile, we identify situations where ignoring measurement error can still yield consistent estimators. Furthermore, we propose a Bayesian method to address the effects of measurement error under the zero-inflated Poisson model and discuss the identifiability issues. We develop a data-augmentation algorithm that is easy to implement. Simulation studies are conducted to evaluate the performance of the proposed method. We apply our method to analyze the data arising from a prostate adenocarcinoma genomic study.  相似文献   

17.
Animal sociability measurements based on inter-individual distances or nearest-neighbour distributions can be obtained automatically with telemetry collars. So far, all the indices that have been used require the whole group to be observed. Here, we propose an index of the variability in affinity relationships in groups of domestic herbivores, whose definition does not depend on group size and that can be used even if some data are missing. This index and its estimators are based on a function that measures how frequently an animal is closer than another one from a third animal. When no data are missing, we show that our estimator and the variance of the sociability matrixsensu Sibbald (considered as the reference method) are strongly correlated. We then consider two cases of missing data. In the first case, some animals are randomly missing, that is, to account for random breakdown of telemetry collars. Our estimator is unbiased by such missing data and its variance decreases as the number of observation dates increases. In the second case, the same animals are missing at all observation dates, that is, in large herds where there are more individuals to be observed than available telemetry collars. Our estimator of affinity variance within a group is biased by such missing data. Thus, it requires changing animals equipped with telemetry collars regularly during the experiment. Conversely, the estimator remains unbiased at the population level, that is, if several independent groups are being analysed. We finally illustrate how this estimator can be used by investigating changes in the variability of affinities according to group size in grazing heifers.  相似文献   

18.
ABSTRACT Use of Global Positioning System (GPS) collars on free-ranging ungulates overcomes many limitations of conventional very high frequency (VHF) telemetry and offers a practical means of studying space use and home range estimation. To better understand winter home ranges of white-tailed deer (Odocoileus virginianus), we evaluated GPS collar performance, and we compared GPS- and VHF-derived diurnal home ranges (for the same animals) and GPS-derived home range estimates for diurnal and nocturnal locations. Overall, the mean fix success rate of our GPS collars was 85% (range = 14–99%). Kernel density estimates of home range (using the 95% probability contour) derived from GPS and VHF locations were generally similar, as were GPS-derived diurnal and nocturnal home ranges. Overlap indices between GPS and VHF utilization distributions (UDs) ranged from 0.49 to 0.78 for the volume of intersection (VI) index and from 0.67 to 0.94 for Bhattacharyya's affinity (BA); overlap indices for GPS-diurnal and nocturnal UDs ranged from 0.29 to 0.81 for VI and from 0.56 to 0.94 for BA. Despite similarities of home ranges estimated from GPS versus VHF locations and GPS-diurnal versus nocturnal locations, our data also indicate that differences may have important implications for studies focused on deer use of space, habitat, and resources at a finer scale.  相似文献   

19.
ABSTRACT Telemetry data have been widely used to quantify wildlife habitat relationships despite the fact that these data are inherently imprecise. All telemetry data have positional error, and failure to account for that error can lead to incorrect predictions of wildlife resource use. Several techniques have been used to account for positional error in wildlife studies. These techniques have been described in the literature, but their ability to accurately characterize wildlife resource use has never been tested. We evaluated the performance of techniques commonly used for incorporating telemetry error into studies of wildlife resource use. Our evaluation was based on imprecise telemetry data (mean telemetry error = 174 m, SD = 130 m) typical of field-based studies. We tested 5 techniques in 10 virtual environments and in one real-world environment for categorical (i.e., habitat types) and continuous (i.e., distances or elevations) rasters. Technique accuracy varied by patch size for the categorical rasters, with higher accuracy as patch size increased. At the smallest patch size (1 ha), the technique that ignores error performed best on categorical data (0.31 and 0.30 accuracy for virtual and real data, respectively); however, as patch size increased the bivariate-weighted technique performed better (0.56 accuracy at patch sizes >31 ha) and achieved complete accuracy (i.e., 1.00 accuracy) at smaller patch sizes (472 ha and 1,522 ha for virtual and real data, respectively) than any other technique. We quantified the accuracy of the continuous covariates using the mean absolute difference (MAD) in covariate value between true and estimated locations. We found that average MAD varied between 104 m (ignore telemetry error) and 140 m (rescale the covariate data) for our continuous covariate surfaces across virtual and real data sets. Techniques that rescale continuous covariate data or use a zonal mean on values within a telemetry error polygon were significantly less accurate than other techniques. Although the technique that ignored telemetry error performed best on categorical rasters with smaller average patch sizes (i.e., ≤31 ha) and on continuous rasters in our study, accuracy was so low that the utility of using point-based approaches for quantifying resource use is questionable when telemetry data are imprecise, particularly for small-patch habitat relationships.  相似文献   

20.
During recent decades satellite telemetry using the Argos system has been used extensively to track many species of marine mammals. However, the aquatic behavior of most of these species results in a high number of locations with low or unknown accuracy. Argos data are often filtered to reduce the noise produced by these locations, typically by removing data points requiring unrealistic swimming speeds. Unfortunately, this method excludes a considerable number of good‐quality locations that have high traveling speeds that are the result of two locations being taken very close in time. We present an alternative algorithm, based on swimming speed, distance between successive locations, and turning angles. This new filter was tested on 67 tracks from nine different marine mammal species: ringed, bearded, gray, harbor, southern elephant, and Antarctic fur seals, walruses, belugas, and narwhals. The algorithm removed similar percentages of low‐quality locations (Argos location classes [LC] B and A) compared to a filter based solely on swimming speed, but preserved significantly higher percentages of good‐quality positions (mean ± SE% of locations removed was 4.1 ± 0.8%vs. 12.6 ± 1.2% for LC 3; 6.8 ± 0.6%vs. 15.7 ± 0.9% for LC 2; and 11.4 ± 0.7%vs. 21.0 ± 0.9% for LC 1). The new filter was also more effective at removing unlikely, conspicuous deviations from the track's path, resulting in fewer locations being registered on land and a significant reduction in home range size, when using the Minimum Convex Polygon method, which is sensitive to outliers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号