首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The binding of elastin peptides on the elastin receptor complex leads to the formation of intracellular signals but how this is achieved remains totally unknown. Using pharmacological inhibitors of the enzymatic activities of its subunits, we show here that the elastin peptide-driven ERK1/2 activation and subsequent pro-MMP-1 production, observed in skin fibroblasts when they are cultured in the presence of these peptides, rely on a membrane-bound sialidase activity. As lactose blocked this effect, the elastin receptor sialidase subunit, Neu-1, seemed to be involved. The use of a catalytically inactive form of Neu-1 and the small interfering RNA-mediated decrease of Neu-1 expression strongly support this view. Finally, we report that N-acetyl neuraminic acid can reproduce the effects of elastin peptides on both ERK1/2 activation and pro-MMP-1 production. Altogether, our results indicate that the enzymatic activity of the Neu-1 subunit of the elastin receptor complex is responsible for its signal transduction, presumably through sialic acid generation from undetermined substrates.  相似文献   

4.
A healthy diet improves adult stem cell function and delays diseases such as cancer, heart disease, and neurodegeneration. Defining molecular mechanisms by which nutrients dictate stem cell behavior is a key step toward understanding the role of diet in tissue homeostasis. In this paper, we elucidate the mechanism by which dietary cholesterol controls epithelial follicle stem cell (FSC) proliferation in the fly ovary. In nutrient-restricted flies, the transmembrane protein Boi sequesters Hedgehog (Hh) ligand at the surface of Hh-producing cells within the ovary, limiting FSC proliferation. Upon feeding, dietary cholesterol stimulates S6 kinase–mediated phosphorylation of the Boi cytoplasmic domain, triggering Hh release and FSC proliferation. This mechanism enables a rapid, tissue-specific response to nutritional changes, tailoring stem cell divisions and egg production to environmental conditions sufficient for progeny survival. If conserved in other systems, this mechanism will likely have important implications for studies on molecular control of stem cell function, in which the benefits of low calorie and low cholesterol diets are beginning to emerge.  相似文献   

5.
6.
The Hedgehog signaling pathway plays an essential role in embryo development and adult tissue homeostasis, in regulating stem cells and is abnormally activated in many cancers. Given the importance of this signaling pathway, we developed a novel and versatile high-throughput, cell-based screening platform using confocal imaging, based on the role of β-arrestin in Hedgehog signal transduction, that can identify agonists or antagonist of the pathway by a simple change to the screening protocol. Here we report the use of this assay in the antagonist mode to identify novel antagonists of Smoothened, including a compound (A8) with low nanomolar activity against wild-type Smo also capable of binding the Smo point mutant D473H associated with clinical resistance in medulloblastoma. Our data validate this novel screening approach in the further development of A8 and related congeners to treat hedgehog related diseases, including the treatment of basal cell carcinoma and medulloblastoma.  相似文献   

7.
8.
9.
《Molecular cell》2023,83(16):3027-3040.e11
  1. Download : Download high-res image (190KB)
  2. Download : Download full-size image
  相似文献   

10.
The G‐protein‐coupled receptor kinase 2 (adrbk2/GRK2) has been implicated in vertebrate Hedgehog (Hh) signalling based on the effects of its transient knock‐down in mammalian cells and zebrafish embryos. Here, we show that the response to Hh signalling is effectively abolished in the absence of Grk2 activity. Zebrafish embryos lacking all Grk2 activity are refractory to both Sonic hedgehog (Shh) and oncogenic Smoothened (Smo) activity, but remain responsive to inhibition of cAMP‐dependent protein kinase (PKA) activity. Mutation of the kinase domain abrogates the rescuing activity of grk2 mRNA, suggesting that Grk2 acts in a kinase‐dependent manner to regulate the response to Hh. Previous studies have suggested that Grk2 potentiates Smo activity by phosphorylating its C‐terminal tail (CTT). In the zebrafish embryo, however, phosphomimetic Smo does not display constitutive activity, whereas phospho‐null mutants retain activity, implying phosphorylation is neither sufficient nor necessary for Smo function. Since Grk2 rescuing activity requires the integrity of domains essential for its interaction with GPCRs, we speculate that Grk2 may regulate Hh pathway activity by downregulation of a GPCR.  相似文献   

11.
In Hedgehog (Hh) signaling, the seven-transmembrane protein Smoothened (Smo) acts as a signal transducer that is regulated by phosphorylation, ubiquitination, and cell surface accumulation. However, it is not clear how Smo cell surface accumulation and intracellular trafficking are regulated. Here, we demonstrate that inactivation of Hrs by deletion or RNAi accumulates Smo in the late endosome that is marked by late endosome markers. Inactivation of Hrs enhances the wing defects caused by dominant-negative Smo. We show that Hrs promotes Smo ubiquitination, deleting the ubiquitin-interacting-motif (UIM) in Hrs abolishes the ability of Hrs to regulate Smo ubiquitination. However, the UIM domain neither recognizes the ubiquitinated Smo nor directly interacts with Smo. Hrs lacking UIM domain still downregulates Smo activity even though to a less extent. We have characterized that the N-terminus of Hrs directly interacts with the PKA/CK1 phosphorylation clusters to prevent Smo phosphorylation and activation, indicating an ubiquitin-independent regulation of Smo by Hrs. Finally, we found that knockdown of Tsg101 accumulates Smo that is co-localized with Hrs and other late endosome markers. Taken together, our data indicate that Hrs mediates Smo trafficking in the late endosome by not only promoting Smo ubiquitination but also blocking Smo phosphorylation.  相似文献   

12.
13.
Hedgehog (Hh) signalling plays a central role in many developmental processes in both vertebrates and invertebrates [1]. The multipass membrane-spanning proteins Patched (Ptc) [2-4] and Smoothened (Smo) [5-7] have been proposed to act as subunits of a putative Hh receptor complex. According to this view, Smo functions as the transducing subunit, the activity of which is blocked by a direct interaction with the ligand-binding subunit, Ptc [8]. Activation of the intracellular signalling pathway occurs when Hh binds to Ptc [8-11], an event assumed to release Smo from Ptc-mediated inhibition. Evidence for a physical interaction between Smo and Ptc is so far limited to studies of the vertebrate versions of these proteins when overexpressed in tissue culture systems [8,12]. To test this model, we have overexpressed the Drosophila Smo protein in vivo and found that increasing the levels of Smo protein per se was not sufficient for activation of the pathway. Immunohistochemical staining of wild-type and transgenic embryos revealed distinct patterns of Smo distribution, depending on which region of the protein was detected by the antibody. Our findings suggest that Smo is modified to yield a non-functional form and this modification is promoted by Ptc in a non-stoichiometric manner.  相似文献   

14.
The Hedgehog pathway, critical to vertebrate development, is organized in primary cilia. Activation of signaling causes the Hedgehog receptor Ptch1 to exit cilia, allowing a second receptor, Smo, to accumulate in cilia and activate the downstream steps of the pathway. Mechanisms regulating the dynamics of these receptors are unknown, but the ubiquitination of Smo regulates its interaction with the intraflagellar transport system to control ciliary levels. A focused screen of ubiquitin-related genes identified nine required for maintaining low ciliary Smo at the basal state. These included cytoplasmic E3s (Arih2, Mgrn1, and Maea), a ciliary localized E3 (Wwp1), a ciliary localized E2 (Ube2l3), a deubiquitinase (Bap1), and three adaptors (Kctd5, Skp1a, and Skp2). The ciliary E3, Wwp1, binds Ptch1 and localizes to cilia at the basal state. Activation of signaling removes both Ptch1 and Wwp1 from cilia, thus providing an elegant mechanism for Ptch1 to regulate ciliary Smo levels.  相似文献   

15.
Localization of cyclic AMP (cAMP)-dependent protein kinase (PKA) by A kinase-anchoring proteins (AKAPs) restricts the action of this broad specificity kinase. The high-resolution crystal structures of the docking and dimerization (D/D) domain of the RIIalpha regulatory subunit of PKA both in the apo state and in complex with the high-affinity anchoring peptide AKAP-IS explain the molecular basis for AKAP-regulatory subunit recognition. AKAP-IS folds into an amphipathic alpha helix that engages an essentially preformed shallow groove on the surface of the RII dimer D/D domains. Conserved AKAP aliphatic residues dominate interactions to RII at the predominantly hydrophobic interface, whereas polar residues are important in conferring R subunit isoform specificity. Using a peptide screening approach, we have developed SuperAKAP-IS, a peptide that is 10,000-fold more selective for the RII isoform relative to RI and can be used to assess the impact of PKA isoform-selective anchoring on cAMP-responsive events inside cells.  相似文献   

16.
The role of human leukocyte antigens (HLA) class II molecules in transducing intracellular signals in immune cells is well established. Solid tumors of different histotype can also express HLA class II antigens; however, their intracellular signaling ability is essentially unknown. Due to the frequent expression of HLA class II molecules in primary and metastatic lesions, cutaneous melanoma was utilized to investigate whether the engagement of HLA-DR molecules transduces functional intracellular signal(s). Triggering of HLA-DR molecules by the anti-HLA-DR monoclonal antibody (mAb) L243 induced a significant (P < 0.05) and dose-dependent growth-inhibition of metastatic melanoma cells Mel 120, as well as their homotypic aggregation. Furthermore, an increase in tyrosine phosphorylation of multiple cellular proteins with a molecular weight ranging from 66 to 130 kD, including p125 focal adhesion kinase, was observed. Lastly, the engagement of HLA-DR molecules by mAb L243 inhibited activator protein-1-DNA binding. Thus, HLA-DR molecules expressed on melanoma cells can transduce functional intracellular signals. This finding is consistent with evidences obtained in hematological malignancies, and suggests the potential usefulness of HLA-DR molecules to set-up new approaches of targeted therapy in metastatic melanoma.  相似文献   

17.
The Carney complex is an inherited tumor predisposition caused by activation of the cAMP-dependent protein kinase [protein kinase A (PKA)] resulting from mutation of the PKA-regulatory subunit gene PRKAR1A. Myxomas and tumors in cAMP-responsive tissues are cardinal features of this syndrome, which is unsurprising given the important role played by PKA in modulating cell growth and function. Previous studies demonstrated that cardiac-specific knockout of Prkar1a causes embryonic heart failure and myxomatous degeneration in the heart, whereas limited Schwann cell-specific knockout of the gene causes schwannoma formation. In this study, we sought to determine the role of PKA activation in this phenotype by using genetic means to reduce PKA enzymatic activity. To accomplish this goal, we introduced null alleles of the PKA catalytic subunits Prkaca (Ca) or Prkacb (Cb) into the Prkar1a-cardiac knockout (R1a-CKO) or limited Schwann cell knockout (R1a-TEC3KO) line. Heterozygosity for Prkaca rescued the embryonic lethality of the R1a-CKO, although mice had a shorter than normal lifespan and died from cardiac failure with atrial thrombosis. In contrast, heterozygosity for Prkacb only enabled the mice to survive 1 extra day during embryogenesis. Biochemical analysis indicated that reduction of Ca markedly reduced PKA activity in embryonic hearts, whereas reduction of Cb had minimal effects. In R1a-TEC3KO mice, tumorigenesis was completely suppressed by a heterozygosity for Prkaca, and by more than 80% by heterozygosity for Prkacb. These data suggest that both developmental and tumor phenotypes caused by Prkar1a mutation result from excess PKA activity due to PKA-Ca.  相似文献   

18.
The seven-transmembrane receptor Smoothened (Smo) transduces the signal initiated by Hedgehog (Hh) morphogen binding to the receptor Patched (Ptc). We have reinvestigated the pharmacological properties of reference molecules acting on the Hh pathway using various Hh responses and a novel functional assay based on the coexpression of Smo with the alpha subunit of the G15 protein in HEK293 cells. The measurement of inositol phosphate (IP) accumulation shows that Smo has constitutive activity, a response blocked by Ptc which indicates a functional Hh receptor complex. Interestingly, the antagonists cyclopamine, Cur61414, and SANT-1 display inverse agonist properties and the agonist SAG has no effect at the Smo-induced IP response, but converts Ptc-mediated inactive forms of Smo into active ones. An oncogenic Smo mutant does not mediate an increase in IP response, presumably reflecting its inability to reach the cell membrane. These studies identify novel properties of molecules displaying potential interest in the treatment of various cancers and brain diseases, and demonstrate that Smo is capable of signaling through G15.  相似文献   

19.
The Hedgehog (Hh) signaling pathway plays an instructional role during development, and is frequently activated in cancer. Ligand-induced pathway activation requires signaling by the transmembrane protein Smoothened (Smo), a member of the G-protein-coupled receptor (GPCR) superfamily. The extracellular (EC) loops of canonical GPCRs harbor cysteine residues that engage in disulfide bonds, affecting active and inactive signaling states through regulating receptor conformation, dimerization and/or ligand binding. Although a functional importance for cysteines localized to the N-terminal extracellular cysteine-rich domain has been described, a functional role for a set of conserved cysteines in the EC loops of Smo has not yet been established. In this study, we mutated each of the conserved EC cysteines, and tested for effects on Hh signal transduction. Cysteine mutagenesis reveals that previously uncharacterized functional roles exist for Smo EC1 and EC2. We provide in vitro and in vivo evidence that EC1 cysteine mutation induces significant Hh-independent Smo signaling, triggering a level of pathway activation similar to that of a maximal Hh response in Drosophila and mammalian systems. Furthermore, we show that a single amino acid change in EC2 attenuates Hh-induced Smo signaling, whereas deletion of the central region of EC2 renders Smo fully active, suggesting that the conformation of EC2 is crucial for regulated Smo activity. Taken together, these findings are consistent with loop cysteines engaging in disulfide bonds that facilitate a Smo conformation that is silent in the absence of Hh, but can transition to a fully active state in response to ligand.  相似文献   

20.
Hedgehog signals regulate multiple aspects of gastrointestinal development   总被引:39,自引:0,他引:39  
The gastrointestinal tract develops from the embryonic gut, which is composed of an endodermally derived epithelium surrounded by cells of mesodermal origin. Cell signaling between these two tissue layers appears to play a critical role in coordinating patterning and organogenesis of the gut and its derivatives. We have assessed the function of Sonic hedgehog and Indian hedgehog genes, which encode members of the Hedgehog family of cell signals. Both are expressed in gut endoderm, whereas target genes are expressed in discrete layers in the mesenchyme. It was unclear whether functional redundancy between the two genes would preclude a genetic analysis of the roles of Hedgehog signaling in the mouse gut. We show here that the mouse gut has both common and separate requirements for Sonic hedgehog and Indian hedgehog. Both Sonic hedgehog and Indian hedgehog mutant mice show reduced smooth muscle, gut malrotation and annular pancreas. Sonic hedgehog mutants display intestinal transformation of the stomach, duodenal stenosis (obstruction), abnormal innervation of the gut and imperforate anus. Indian hedgehog mutants show reduced epithelial stem cell proliferation and differentiation, together with features typical of Hirschsprung's disease (aganglionic colon). These results show that Hedgehog signals are essential for organogenesis of the mammalian gastrointestinal tract and suggest that mutations in members of this signaling pathway may be involved in human gastrointestinal malformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号