首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. Studies on the effects of human‐driven forest disturbance usually focus on either biodiversity or carbon dynamics but much less is known about ecosystem processes that span different trophic levels. Herbivory is a fundamental ecological process for ecosystem functioning, but it remains poorly quantified in human‐modified tropical rainforests.
  2. Here, we present the results of the largest study to date on the impacts of human disturbances on herbivory. We quantified the incidence (percentage of leaves affected) and severity (the percentage of leaf area lost) of canopy insect herbivory caused by chewers, miners, and gall makers in leaves from 1,076 trees distributed across 20 undisturbed and human‐modified forest plots in the Amazon.
  3. We found that chewers dominated herbivory incidence, yet were not a good predictor of the other forms of herbivory at either the stem or plot level. Chewing severity was higher in both logged and logged‐and‐burned primary forests when compared to undisturbed forests. We found no difference in herbivory severity between undisturbed primary forests and secondary forests. Despite evidence at the stem level, neither plot‐level incidence nor severity of the three forms of herbivory responded to disturbance.
  4. Synthesis. Our large‐scale study of canopy herbivory confirms that chewers dominate the herbivory signal in tropical forests, but that their influence on leaf area lost cannot predict the incidence or severity of other forms. We found only limited evidence suggesting that human disturbance affects the severity of leaf herbivory, with higher values in logged and logged‐and‐burned forests than undisturbed and secondary forests. Additionally, we found no effect of human disturbance on the incidence of leaf herbivory.
  相似文献   

2.
  1. Community scientists have illustrated rapid declines of several aphidophagous lady beetle (Coccinellidae) species. These declines coincide with the establishment of alien coccinellids. We established the Buckeye Lady Beetle Blitz program to measure the seasonal occupancy of coccinellids within gardens across a wide range of landscape contexts. Following the Habitat Compression Hypothesis, we predicted that gardens within agricultural landscapes would be alien‐dominated, whereas captures of natives would be higher within landscapes encompassing a high concentration of natural habitat.
  2. Within the state of Ohio, USA, community scientists collected lady beetles for a 7‐day period across 4 years in June and August using yellow sticky card traps. All identifications were verified by professional scientists and beetles were classified by three traits: status (alien or native), mean body length, and primary diet. We compared the relative abundance and diversity of coccinellids seasonally and determined if the distribution of beetles by size, status, and diet was related to landscape features.
  3. Alien species dominated the aphidophagous fauna. Native aphidophagous coccinellid abundance was positively correlated with forest habitat while alien species were more common when gardens were embedded within agricultural landscapes. Urbanization was negatively associated with both aphidophagous alien and native coccinellids.
  4. Synthesis and Applications: Our census of native coccinellid species within residential gardens—a widespread and understudied habitat—was enabled by volunteers. These data will serve as an important baseline to track future changes within coccinellid communities within this region. We found that native coccinellid species richness and native aphidophagous coccinellid abundance in gardens were positively associated with forest habitat at a landscape scale of 2 km. However, our understanding of when and why (overwintering, summer foraging, or both) forest habitats are important remains unclear. Our findings highlight the need to understand how declining aphidophagous native species utilize forest habitats as a conservation priority.
  相似文献   

3.
The biogeography of naturalization in alien plants   总被引:9,自引:0,他引:9  
Aim  This paper reviews the main geographical determinants of naturalization in plants.
Location  Global.
Methods  Comparative studies of large data sets of alien floras are the main source of information on global patterns of naturalization.
Results  Temperate mainland regions are more invaded than tropical mainland regions but there seems to be no difference in invasibility of temperate and tropical islands. Islands are more invaded than the mainland. The number of naturalized species in temperate regions decreases with latitude and their geographical ranges increase with latitude. The number of naturalized species on islands increases with temperature. Naturalized species contribute to floristic homogenization, but the phenomenon is scale-dependent.
Main conclusions  Some robust patterns are evident from currently available data, but further research is needed on several aspects to advance our understanding of the biogeography of naturalization of alien plants. For example, measures of propagule pressure are needed to determine the invasibility of communities/ecosystems/regions. The patterns discussed in this paper are derived largely from numbers and proportions of naturalized species, and little is known about the proportion of introduced species that become naturalized. Further insights on naturalization rates, i.e. the proportion of aliens that successfully naturalize within regions, and on geographical and other determinants of its variation would provide us with better understanding of the invasion process. Comparative studies, and resulting generalizations, are almost exclusively based on numbers of species, but alien species differ in their impact on native biodiversity and ecosystem processes.  相似文献   

4.
  1. Large areas of highly productive tropical forests occur on weathered soils with low concentrations of available phosphorus (P). In such forests, root and microbial production of acid phosphatase enzymes capable of mineralizing organic phosphorus is considered vital to increasing available P for plant uptake.
  2. We measured both root and soil phosphatase throughout depth and alongside a variety of root and soil factors to better understand the potential of roots and soil biota to increase P availability and to constrain estimates of the biochemical mineralization within ecosystem models.
  3. We measured soil phosphatase down to 1 m, root phosphatase to 30 cm, and collected data on fine‐root mass density, specific root length, soil P, bulk density, and soil texture using soil cores in four tropical forests within the Luquillo Experimental Forest in Puerto Rico.
  4. We found that soil phosphatase decreased with soil depth, but not root phosphatase. Furthermore, when both soil and root phosphatase were expressed per soil volume, soil phosphatase was 100‐fold higher that root phosphatase.
  5. Both root and soil factors influenced soil and root phosphatase. Soil phosphatase increased with fine‐root mass density and organic P, which together explained over 50% of the variation in soil phosphatase. Over 80% of the variation in root phosphatase per unit root mass was attributed to specific root length (positive correlation) and available (resin) P (negative correlation).
  6. Synthesis: Fine‐root traits and soil P data are necessary to understand and represent soil and root phosphatase activity throughout the soil column and across sites with different soil conditions and tree species. These findings can be used to parameterize or benchmark estimates of biochemical mineralization in ecosystem models that contain fine‐root biomass and soil P distributions throughout depth.
  相似文献   

5.
Continental tropical ecosystems are generally viewed as less vulnerable to biological invasions than island ones. Their apparent resistance to invasive alien species is often attributed to their higher native biota diversity and complexity. However, with the increase of human activities and disturbances and the accelerate rate of introductions of plant species, these apparently resilient continental ecosystems are now experiencing alien plant naturalization and invasion events. In order to illustrate this emergent phenomenon, we compiled a list of all known introduced and naturalized plant species in French Guiana (Guiana Shield, South America). A total of 490 alien plants were recorded, about 34% of which are currently naturalized, mainly species belonging to the Acanthaceae and Fabaceae (Faboideae) in the Eudicotyledons, and Poaceae (grasses) and Arecaceae (palms) in the Monocotyledons. The coastal dry and wet savannas appears to be vulnerable to plant invasion (with 165 naturalized species, about 34% of the alien flora), especially by Acacia mangium (Mimosaceae) and Melaleuca quinquenervia (Myrtaceae) which are forming localized but dense monotypic stands. Both tree species, intentionnally introduced for reforestation, rehabilitation, and as garden ornamentals and have the potential to spread with increasing human disturbances The number and abundance of naturalized alien plants in the relatively undisturbed tropical lowland rainforests and savannas remains still very low. Therefore, surveillance, early detection, and eradication of potential plant invaders are crucial; moreover collaboration with neighbouring countries of the Guiana Shield is essential to prevent the introduction of potentially invasive species which are still not present in French Guiana.  相似文献   

6.
  1. A recent analysis of variation in six major traits conducted on a large worldwide sample of vascular plant species showed that three‐quarters of trait variation was captured by a two‐dimensional global spectrum of plant form and function (“global spectrum” hereafter). We developed the PhenoSpace application, whose aim is to visualize and export the position of any individual/population/species in the phenotypic space of the global spectrum.
  2. PhenoSpace is a Shiny application that helps users to manipulate and visualize data pertaining to the global spectrum of plant form and function. It is freely accessible at the following URL: https://shiny.cefe.cnrs.fr/PhenoSpace/.
  3. PhenoSpace has three main functionalities. First, it allows users to visualize the phenotypic space of the global spectrum using different combinations of traits and growth forms. Second, trait data from any new user‐defined dataset can be projected onto the phenotypic space of the global spectrum, provided that at least two of the six traits are available. Finally, figures produced and loadings of the imported data on the PCA axes can be downloaded, allowing users to conduct further analyses.
  4. PhenoSpace fulfills the practical goal of positioning plants in the phenotypic space of the global spectrum, making it possible to compare trait variation at any level of organization against the worldwide background. This serves a major aim of comparative plant ecology, which is to put specific sets of individuals, populations or species into a broader context, facilitating comparison and synthesis of results across different continents and environments using relevant indicators of plant design and function.
  相似文献   

7.
This study aims to identify the flower visitors of Mucuna thailandica (Fabaceae), endemic plant species in montane forests in Thailand, to determine their potential pollinators. The genus Mucuna produces papilionaceous flowers and has an explosive flower‐opening step. Explosive opening rapidly exposes stamens and pistil from keel petals and releases pollen. The flower of this species depends completely on animals to perform this step, essential for pollination success. Using a camera trap survey, we revealed that non‐flying mammals, such as squirrels (Callosciurus sp.) and masked palm civets (Paguma larvata), opened flowers explosively. Thus, these mammals contribute to the pollination of M. thailandica. This is the first report of non‐flying mammals contributing to pollination in montane forests in tropical Asia.  相似文献   

8.
  1. Flowering plants in tropical rainforests rely heavily on pollen vectors for successful reproduction. Research into pollination systems in tropical rainforests is dominated by canopy species, while subcanopy plant–pollinator interactions remain under‐represented. The microclimate beneath the rainforest canopy is characterized by low light levels and is markedly different from the canopy environment that receives more light energy.
  2. We studied the floral attractants and floral visitors of a dioecious, subcanopy tree, Fontainea picrosperma (Euphorbiaceae), in the Wet Tropics bioregion of northern Queensland, Australia.
  3. We found that wind pollination is rare and male and female flowers do not produce nectar. Female flowers are likely pollinated due to their perceptual similarity to pollen‐offering male flowers. Female flowers had the same scent profile as male flowers, and floral scent was an important floral attractant that acted to regulate pollinator behavior. The two most abundant scent compounds present in the floral bouquet were benzyl alcohol and 4‐oxoisophorone. These compounds are ubiquitous in nature and are known to attract a wide variety of insects. Both day‐time and night‐time pollinators contributed to successful pollen deposition on the stigma, and diurnal flower visitors were identified from several orders of insects including beetles, flies, predatory wasps, and thrips. Fontainea picrosperma is therefore likely to be pollinated by a diverse array of small insects.
  4. Synthesis. Our data indicate that F. picrosperma has a generalist, entomophilous pollination syndrome. The rainforest subcanopy is a distinctive environment characterized by low light levels, low or turbulent wind speeds, and relatively high humidity. Female flowers of F. picrosperma exhibit cost‐saving strategies by not producing nectar and mimicking the smell of reward‐offering male flowers. Insects opportunistically forage on or inhabit flowers, and pollination occurs from a pool of small insects with low energy requirements that are found beneath the rainforest canopy.
  相似文献   

9.
  1. Understanding the drivers of trait selection is critical for resolving community assembly processes. Here, we test the importance of environmental filtering and trait covariance for structuring the functional traits of understory herbaceous communities distributed along a natural environmental resource gradient that varied in soil moisture, temperature, and nitrogen availability, produced by different topographic positions in the southern Appalachian Mountains.
  2. To uncover potential differences in community‐level trait responses to the resource gradient, we quantified the averages and variances of both abundance‐weighted and unweighted values for six functional traits (vegetative height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, and leaf δ13C) using 15 individuals of each of the 108 species of understory herbs found at two sites in the southern Appalachians of western North Carolina, USA.
  3. Environmental variables were better predictors of weighted than unweighted community‐level average trait values for all but height and leaf N, indicating strong environmental filtering of plant abundance. Community‐level variance patterns also showed increased convergence of abundance‐weighted traits as resource limitation became more severe.
  4. Functional trait covariance patterns based on weighted averages were uniform across the gradient, whereas coordination based on unweighted averages was inconsistent and varied with environmental context. In line with these results, structural equation modeling revealed that unweighted community‐average traits responded directly to local environmental variation, whereas weighted community‐average traits responded indirectly to local environmental variation through trait coordination.
  5. Our finding that trait coordination is more important for explaining the distribution of weighted than unweighted average trait values along the gradient indicates that environmental filtering acts on multiple traits simultaneously, with abundant species possessing more favorable combinations of traits for maximizing fitness in a given environment.
  相似文献   

10.
Naturalization of alien plants in China   总被引:3,自引:0,他引:3  
Naturalization (the establishment of a self-sustaining population for at least a decade) is a fundamental precondition for plant invasion and so compiling a complete inventory of naturalized alien species is necessary for predicting and hence preventing such invasion. However, nationwide information on naturalized plants in China is still lacking. We compiled a nationwide list of the naturalized plant species of China, based on various literature reports. The list comprised a total of 861 naturalized plant species belonging to 110 families and 465 genera. The three most dominant families were Compositae, Poaceae, and Leguminosae, accounting for 16, 13 and 12% of naturalized plants, respectively. Among genera, Euphorbia and Solanum had the most naturalized species, followed by Ipomoea, Amaranthus, Oenothera, and Trifolium. Over half of all aliens were of American origin (52%), followed by those with European (14%) and Asian (13%) origins. Annuals and perennial herbs were prevalent among naturalized species; comparison to other studies suggests however that the invasive potential is higher among plants with longer life cycles than those of annuals. The taxonomic pattern of plant naturalization in China is similar to patterns worldwide. However, the low proportion of naturalized plants within the Chinese flora overall suggests that the potential for plant invasions in China may be high. Therefore, greater attention should be focused on naturalization of alien plants in China, especially concerning species of dominant families or genera, and those with a perennial life cycle.  相似文献   

11.
Generalist species dominate urban ecosystems. The success of urban generalists is often related to a plastic diet and feeding traits that allow them to take advantage of a variety of food resources provided by humans in cities. The classification of a species as a generalist is commonly based on mean estimates of diet‐ and feeding‐related traits. However, there is increasing evidence that a generalist population can consist of individual specialists. In such cases, estimates based on mean can hide important individual variation that can explain trophic ecology and the success of urban dwellers. Here, we focus on guppies, Poecilia reticulata, a widespread alien fish species which has invaded both urban and non‐urban systems, to explore the effect of urbanization on individual diet and feeding morphology (cranium shape). Our results show that guppies in urban and non‐urban populations are not individual specialists, having a similar generalist diet despite the high population density. However, there is important individual variation in cranium shape which allow urban guppies to feed more efficiently on highly nutritious food. Our data suggest that individual variation in feeding efficiency can be a critical overlooked trait that facilitates the success of urban generalists.  相似文献   

12.
  1. Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co‐occurring plant species.
  2. Using a Holarctic dataset of exposed‐feeding and shelter‐building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.
  3. Our plant–caterpillar network data derived from plot‐based samplings at three different continents included >28,000 individual caterpillar–plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.
  4. The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed‐feeding and shelter‐building caterpillars.
  5. Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host‐specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large‐scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
  相似文献   

13.
The success of species invasions depends on multiple factors, including propagule pressure, disturbance, productivity, and the traits of native and non‐native species. While the importance of many of these determinants has already been investigated in relative isolation, they are rarely studied in combination. Here, we address this shortcoming by exploring the effect of the above‐listed factors on the success of invasions using an individual‐based mechanistic model. This approach enables us to explicitly control environmental factors (temperature as surrogate for productivity, disturbance, and propagule pressure) as well as to monitor whole‐community trait distributions of environmental adaptation, mass, and dispersal abilities. We simulated introductions of plant individuals to an oceanic island to assess which factors and species traits contribute to invasion success. We found that the most influential factors were higher propagule pressure and a particular set of traits. This invasion trait syndrome was characterized by a relative similarity in functional traits of invasive to native species, while invasive species had on average higher environmental adaptation, higher body mass, and increased dispersal distances, that is, had greater competitive and dispersive abilities. Our results highlight the importance in management practice of reducing the import of alien species, especially those that display this trait syndrome and come from similar habitats as those being managed.  相似文献   

14.
  1. We investigated some aspects of hawkmoth community assembly at 13 elevations along a 200‐ to 2770‐m transect in the eastern Himalayas, a little studied biodiversity hot spot of global importance. We measured the morphological traits of body mass, wing loading, and wing aspect ratio of 3,301 free‐ranging individuals of 76 species without having to collect or even constrain them. We used these trait measurements and T‐statistic metrics to assess the strength of intracommunity (“internal") and extra‐community (“external”) filters which determine the composition of communities vis‐a‐vis the regional pool of species.
  2. The trait distribution of constituent species turned out to be nonrandom subsets of the community‐trait distribution, providing strong evidence for internal filtering in all elevational communities. The external filter metric was more ambiguous. However, the elevational dependence of many metrics including that of the internal filter provided evidence for external (i.e., environmental) filtering. On average, a species occupied as much as 50%–75% of the total community‐trait space, yet the T‐statistic metric for internal filter was sufficiently sensitive to detect a strong nonrandom structure in the trait distribution.
  3. We suggest that the change in T‐statistic metrics along the environmental gradient may provide more clues to the process of community assembly than previously envisaged. A large, smoothly varying and well‐sampled environmental span would make it easier to discern them. Developing T‐statistics for combined analysis of multiple traits will perhaps provide a more accurate picture of internal/filtering and niche complementarity. Moths are a hyperdiverse taxon and a very important component of many ecosystems. Our technique for accurately measuring body and wing dimensions of free‐ranging moths can generate trait database for a large number of individuals in a time‐ and resource‐efficient manner for a variety of community assembly studies using this important taxon.
  相似文献   

15.
  1. Saltmarsh‐mangrove ecotones occur at the boundary of the natural geographic distribution of mangroves and salt marshes. Climate warming and species invasion can also drive the formation of saltmarsh‐mangrove mixing communities. How these coastal species live together in a “new” mixed community is important in predicting the dynamic of saltmarsh‐mangrove ecosystems as affected by ongoing climate change or human activities. To date, the understanding of species interactions has been rare on adult species in these ecotones.
  2. Two typical coastal wetlands were selected as cases to understand how mangrove and saltmarsh species living together in the ecotones. The leaves of seven species were sampled from these coastal wetlands based on their distribution patterns (living alone or coexisting) in the high tidal zone, and seven commonly used functional traits of these species were analyzed.
  3. We found niche separation between saltmarsh and mangrove species, which is probably due to the different adaptive strategies they adopted to deal with intertidal environments.
  4. Weak interactions between coexisting species were dominated in the high tidal zone of the two saltmarsh‐mangrove communities, which could be driven by both niche differentiation and neutral theory.
  5. Synthesis. Our field study implies a potential opportunity to establish a multispecies community in the high tidal zone of saltmarsh‐mangrove ecotones, where the sediment was characterized by low salinity and high nitrogen.
  相似文献   

16.
  1. Trait‐based ecology holds the promise to explain how plant communities work, for example, how functional diversity may support community productivity. However, so far it has been difficult to combine field‐based approaches assessing traits at the level of plant individuals with limited spatial coverage and approaches using remote sensing (RS) with complete spatial coverage but assessing traits at the level of vegetation pixels rather than individuals. By delineating all individual‐tree crowns within a temperate forest site and then assigning RS‐derived trait measures to these trees, we combine the two approaches, allowing us to use general linear models to estimate the influence of taxonomic or environmental variation on between‐ and within‐species variation across contiguous space.
  2. We used airborne imaging spectroscopy and laser scanning to collect individual‐tree RS data from a mixed conifer‐angiosperm forest on a mountain slope extending over 5.5 ha and covering large environmental gradients in elevation as well as light and soil conditions. We derived three biochemical (leaf chlorophyll, carotenoids, and water content) and three architectural traits (plant area index, foliage‐height diversity, and canopy height), which had previously been used to characterize plant function, from the RS data. We then quantified the contributions of taxonomic and environmental variation and their interaction to trait variation and partitioned the remaining within‐species trait variation into smaller‐scale spatial and residual variation. We also investigated the correlation between functional trait and phylogenetic distances at the between‐species level. The forest consisted of 13 tree species of which eight occurred in sufficient abundance for quantitative analysis.
  3. On average, taxonomic variation between species accounted for more than 15% of trait variation in biochemical traits but only around 5% (still highly significant) in architectural traits. Biochemical trait distances among species also showed a stronger correlation with phylogenetic distances than did architectural trait distances. Light and soil conditions together with elevation explained slightly more variation than taxonomy across all traits, but in particular increased plant area index (light) and reduced canopy height (elevation). Except for foliage‐height diversity, all traits were affected by significant interactions between taxonomic and environmental variation, the different responses of the eight species to the within‐site environmental gradients potentially contributing to the coexistence of the eight abundant species.
  4. We conclude that with high‐resolution RS data it is possible to delineate individual‐tree crowns within a forest and thus assess functional traits derived from RS data at individual level. With this precondition fulfilled, it is then possible to apply tools commonly used in field‐based trait ecology to partition trait variation among individuals into taxonomic and potentially even genetic variation, environmental variation, and interactions between the two. The method proposed here presents a promising way of assessing individual‐based trait information with complete spatial coverage and thus allowing analysis of functional diversity at different scales. This information can help to better understand processes shaping community structure, productivity, and stability of forests.
  相似文献   

17.
  1. With the increase in global trade and warming patterns, the movement, introduction, and establishment of non‐native insect species has increased. A rapid and effective early detection biosurveillance program to identify species of concern is needed to reduce future impacts and costs associated with introduced non‐native species. One of the challenges facing insect surveillance trapping methods is the sheer volume of individual specimens in the collections. Although molecular identification methods are improving, they currently have limitations (e.g., destructive processing of specimens) and a protocol addressing these limitations can support regulatory applications that need morphological evidence to corroborate molecular data.
  2. The novel protocol presented here uses a metabarcoding approach to amplify environmental DNA from a saturated salt solution trap fluid, which retains trap specimens for downstream morphological identifications. The use of a saturated salt solution to preserve specimens in traps addresses issues with the high evaporation rate of ethanol in traps, and public safety concerns with other fluid preservation options with unattended traps in public settings.
  3. Using a metabarcoding approach, a 407‐nucleotide segment of the cytochrome c oxidase subunit 1 (COI) animal barcode region was successfully amplified from Lindgren funnel trap collection fluids. These traps were placed in forested areas to survey for wood‐boring beetles of regulatory concern. Our results displayed successful amplification of target taxa, including the molecular identification of the Japanese Beetle Popillia japonica, a species regulated in Canada. A second species, Anisandrus maiche, recently introduced to North America, was identified in every trap. The genus Lymantria, which contains numerous species of concern to North American woodlands, was also detected. Also, there were six other species identified of interest due to their potential impacts on native and crop flora and fauna.
  4. Our results show how this protocol can be used as an efficient method for the surveillance of insects using a trap with a saturated salt solution and eDNA metabarcoding to detect species of regulatory concern.
  相似文献   

18.
  1. In seasonally dry tropical forests, plant functional type can be classified as deciduous low wood density, deciduous high wood density, or evergreen high wood density species. While deciduousness is often associated with drought‐avoidance and low wood density is often associated with tissue water storage, the degree to which these functional types may correspond to diverging and unique water use strategies has not been extensively tested.
  2. We examined (a) tolerance to water stress, measured by predawn and mid‐day leaf water potential; (b) water use efficiency, measured via foliar δ13C; and (c) access to soil water, measured via stem water δ18O.
  3. We found that deciduous low wood density species maintain high leaf water potential and low water use efficiency. Deciduous high wood density species have lower leaf water potential and variable water use efficiency. Both groups rely on shallow soil water. Evergreen high wood density species have low leaf water potential, higher water use efficiency, and access alternative water sources. These findings indicate that deciduous low wood density species are drought avoiders, with a specialized strategy for storing root and stem water. Deciduous high wood density species are moderately drought tolerant, and evergreen high wood density species are the most drought tolerant group.
  4. Synthesis. Our results broadly support the plant functional type framework as a way to understand water use strategies, but also highlight species‐level differences.
  相似文献   

19.
  1. Forest canopies play a crucial role in structuring communities of vascular epiphytes by providing substrate for colonization, by locally varying microclimate, and by causing epiphyte mortality due to branch or tree fall. However, as field studies in the three‐dimensional habitat of epiphytes are generally challenging, our understanding of how forest structure and dynamics influence the structure and dynamics of epiphyte communities is scarce.
  2. Mechanistic models can improve our understanding of epiphyte community dynamics. We present such a model that couples dispersal, growth, and mortality of individual epiphytes with substrate dynamics, obtained from a three‐dimensional functional–structural forest model, allowing the study of forest–epiphyte interactions. After validating the epiphyte model with independent field data, we performed several theoretical simulation experiments to assess how (a) differences in natural forest dynamics, (b) selective logging, and (c) forest fragmentation could influence the long‐term dynamics of epiphyte communities.
  3. The proportion of arboreal substrate occupied by epiphytes (i.e., saturation level) was tightly linked with forest dynamics and increased with decreasing forest turnover rates. While species richness was, in general, negatively correlated with forest turnover rates, low species numbers in forests with very‐low‐turnover rates were due to competitive exclusion when epiphyte communities became saturated. Logging had a negative impact on epiphyte communities, potentially leading to a near‐complete extirpation of epiphytes when the simulated target diameters fell below a threshold. Fragment size had no effect on epiphyte abundance and saturation level but correlated positively with species numbers.
  4. Synthesis: The presented model is a first step toward studying the dynamic forest–epiphyte interactions in an agent‐based modeling framework. Our study suggests forest dynamics as key factor in controlling epiphyte communities. Thus, both natural and human‐induced changes in forest dynamics, for example, increased mortality rates or the loss of large trees, pose challenges for epiphyte conservation.
  相似文献   

20.
  1. The early detection of invasive non‐native species (INNS) is important for informing management actions. Established monitoring methods require the collection or observation of specimens, which is unlikely at the beginning of an invasion when densities are likely to be low. Environmental DNA (eDNA) analysis is a highly promising technique for the detection of INNS—particularly during the early stages of an invasion.
  2. Here, we compared the use of traditional kick‐net sampling with two eDNA approaches (targeted detection using both conventional and quantitative PCR and passive detection via metabarcoding with conserved primers) for detection of quagga mussel, Dreissena rostriformis bugensis, a high priority INNS, along a density gradient on the River Wraysbury, UK.
  3. All three molecular tools outperformed traditional sampling in terms of detection. Conventional PCR and qPCR both had 100% detection rate in all samples and outperformed metabarcoding when the target species was at low densities. Additionally, quagga mussel DNA copy number (qPCR) and relative read count (metabarcoding) were significantly influenced by both mussel density and distance from source population, with distance being the most significant predictor.
  4. Synthesis and application. All three molecular approaches were more sensitive than traditional kick‐net sampling for the detection of the quagga mussel in flowing water, and both qPCR and metabarcoding enabled estimates of relative abundance. Targeted approaches were more sensitive than metabarcoding, but metabarcoding has the advantage of providing information on the wider community and consequently the impacts of INNS.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号