首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Comment on: Maiti A, et al. Proc Natl Acad Sci USA 2012; 109:8091-6.  相似文献   

3.
Summary The in vivo excision repair functions of Escherichia coli exonuclease III and 3-methyladenine DNA glycosylase I, and bacteriophage T4 pyrimidine dimer-DNA glycosylase were investigated. Following exposure of bacteriophage T4 or lambda to methyl methanesulfonate or ultraviolet irradiation, survival was determined by plating on E. coli have various genetic backgrounds. Although exonuclease III was shown to participate in base excision repair initiated by 3-methyladenine DNA glcosylase I, it had no detectable role in base excision repair initiated by the T4 pyrimidine dimer-DNA glycosylase. Despite its 3 apurinic/apyrimidinic endonuclease activity in vitro, T4 pyrimidine dimer-DNA glycosylase, even in large quantities, did not complement mutants defective in exonuclease III in the repair of apurinic sites generated by 3-methyladenine DNA glycosylase I in vivo.  相似文献   

4.
The p53 tumor suppressor that plays a central role in the cellular response to genotoxic stress was suggested to be associated with the DNA repair machinery which mostly involves nucleotide excision repair (NER). In the present study we show for the first time that p53 is also directly involved in base excision repair (BER). These experiments were performed with p53 temperature-sensitive (ts) mutants that were previously studied in in vivo experimental models. We report here that p53 ts mutants can also acquire wild-type activity under in vitro conditions. Using ts mutants of murine and human origin, it was observed that cell extracts overexpressing p53 exhibited an augmented BER activity measured in an in vitro assay. Depletion of p53 from the nuclear extracts abolished this enhanced activity. Together, this suggests that p53 is involved in more than one DNA repair pathway.  相似文献   

5.
Free radical attack on the sugar-phosphate backbone generates oxidized apurinic/apyrimidinic (AP) residues in DNA. 2'-deoxyribonolactone (dL) is a C1'-oxidized AP site damage generated by UV and gamma-irradiation, and certain anticancer drugs. If not repaired dL produces G-->A transitions in Escherichia coli. In the base excision repair (BER) pathway, AP endonucleases are the major enzymes responsible for 5'-incision of the regular AP site (dR) and dL. DNA glycosylases with associated AP lyase activity can also efficiently cleave regular AP sites. Here, we report that dL is a substrate for AP endonucleases but not for DNA glycosylases/AP lyases. The kinetic parameters of the dL-incision were similar to those of the dR. DNA glycosylases such as E. coli formamidopyrimidine-DNA glycosylase, mismatch-specific uracil-DNA glycosylase, and human alkylpurine-DNA N-glycosylase bind strongly to dL without cleaving it. We show that dL cross-links with the human proteins 8-oxoguanine-DNA (hOGG1) and thymine glycol-DNA glycosylases (hNth1), and dR cross-links with Nth and hNth1. These results suggest that dL and dR induced genotoxicity might be strengthened by BER pathway in vivo.  相似文献   

6.
Thymine DNA glycosylase (TDG) excises T from G·T mispairs and is thought to initiate base excision repair (BER) of deaminated 5-methylcytosine (mC). Recent studies show that TDG, including its glycosylase activity, is essential for active DNA demethylation and embryonic development. These and other findings suggest that active demethylation could involve mC deamination by a deaminase, giving a G·T mispair followed by TDG-initiated BER. An alternative proposal is that demethylation could involve iterative oxidation of mC to 5-hydroxymethylcytosine (hmC) and then to 5-formylcytosine (fC) and 5-carboxylcytosine (caC), mediated by a Tet (ten eleven translocation) enzyme, with conversion of caC to C by a putative decarboxylase. Our previous studies suggest that TDG could excise fC and caC from DNA, which could provide another potential demethylation mechanism. We show here that TDG rapidly removes fC, with higher activity than for G·T mispairs, and has substantial caC excision activity, yet it cannot remove hmC. TDG excision of fC and caC, oxidation products of mC, is consistent with its strong specificity for excising bases from a CpG context. Our findings reveal a remarkable new aspect of specificity for TDG, inform its catalytic mechanism, and suggest that TDG could protect against fC-induced mutagenesis. The results also suggest a new potential mechanism for active DNA demethylation, involving TDG excision of Tet-produced fC (or caC) and subsequent BER. Such a mechanism obviates the need for a decarboxylase and is consistent with findings that TDG glycosylase activity is essential for active demethylation and embryonic development, as are mechanisms involving TDG excision of deaminated mC or hmC.  相似文献   

7.
Interstrand DNA–DNA cross-links are highly toxic lesions that are important in medicinal chemistry, toxicology, and endogenous biology. In current models of replication-dependent repair, stalling of a replication fork activates the Fanconi anemia pathway and cross-links are “unhooked” by the action of structure-specific endonucleases such as XPF-ERCC1 that make incisions flanking the cross-link. This process generates a double-strand break, which must be subsequently repaired by homologous recombination. Recent work provided evidence for a new, incision-independent unhooking mechanism involving intrusion of a base excision repair (BER) enzyme, NEIL3, into the world of cross-link repair. The evidence suggests that the glycosylase action of NEIL3 unhooks interstrand cross-links derived from an abasic site or the psoralen derivative trioxsalen. If the incision-independent NEIL3 pathway is blocked, repair reverts to the incision-dependent route. In light of the new model invoking participation of NEIL3 in cross-link repair, we consider the possibility that various BER glycosylases or other DNA-processing enzymes might participate in the unhooking of chemically diverse interstrand DNA cross-links.  相似文献   

8.
The major enzyme in eukaryotic cells that catalyzes the cleavage of apurinic/apyrimidinic (AP or abasic) sites is AP endonuclease 1 (APE1) that cleaves the phosphodiester bond on the 5′-side of AP sites. We found that the efficiency of AP site cleavage by APE1 was affected by the benzo[a]pyrenyl-DNA adduct (BPDE-dG) in the opposite strand. AP sites directly opposite of the modified dG or shifted toward the 5′ direction were hydrolyzed by APE1 with an efficiency moderately lower than the AP site in the control DNA duplex, whereas AP sites shifted toward the 3′ direction were hydrolyzed significantly less efficiently. For all DNA structures except DNA with the AP site shifted by 3 nucleotides in the 3′ direction (AP+3-BP-DNA), hydrolysis was more efficient in the case of (+)-trans-BPDE-dG. Using molecular dynamic simulation, we have shown that in the complex of APE1 with the AP+3-BP-DNA, the BP residue is located within the DNA bend induced by APE1 and contacts the amino acids in the enzyme catalytic center and the catalytic metal ion. The geometry of the APE1 active site is perturbed more significantly by the trans-isomer of BPDE-dG that intercalates into the APE1-DNA complex near the cleaved phosphodiester bond. The ability of DNA polymerases β (Polβ), λ and ι to catalyze gap-filling synthesis in cooperation with APE1 was also analyzed. Polβ was shown to inhibit the 3′  5′ exonuclease activity of APE1 when both enzymes were added simultaneously and to insert the correct nucleotide into the gap arising after AP site hydrolysis. Therefore, further evidence for the functional cooperation of APE1 and Polβ in base excision repair was obtained.  相似文献   

9.
DNA damaging agents are a constant threat to genomes in both the nucleus and the mitochondria. To combat this threat, a suite of DNA repair pathways cooperate to repair numerous types of DNA damage. If left unrepaired, these damages can result in the accumulation of mutations which can lead to deleterious consequences including cancer and neurodegenerative disorders. The base excision repair (BER) pathway is highly conserved from bacteria to humans and is primarily responsible for the removal and subsequent repair of toxic and mutagenic oxidative DNA lesions. Although the biochemical steps that occur in the BER pathway have been well defined, little is known about how the BER machinery is regulated. The budding yeast, Saccharomyces cerevisiae is a powerful model system to biochemically and genetically dissect BER. BER is initiated by DNA N-glycosylases, such as S. cerevisiae Ntg1. Previous work demonstrates that Ntg1 is post-translationally modified by SUMO in response to oxidative DNA damage suggesting that this modification could modulate the function of Ntg1. In this study, we mapped the specific sites of SUMO modification within Ntg1 and identified the enzymes responsible for sumoylating/desumoylating Ntg1. Using a non-sumoylatable version of Ntg1, ntg1ΔSUMO, we performed an initial assessment of the functional impact of Ntg1 SUMO modification in the cellular response to DNA damage. Finally, we demonstrate that, similar to Ntg1, the human homologue of Ntg1, NTHL1, can also be SUMO-modified in response to oxidative stress. Our results suggest that SUMO modification of BER proteins could be a conserved mechanism to coordinate cellular responses to DNA damage.  相似文献   

10.
DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT‐like repeat (HLR) fold. AlkD uses a unique non‐base‐flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair. In contrast, AlkC has a much narrower specificity for small lesions, principally N3‐methyladenine (3mA). Here, we describe how AlkC selects for and excises 3mA using a non‐base‐flipping strategy distinct from that of AlkD. A crystal structure resembling a catalytic intermediate complex shows how AlkC uses unique HLR and immunoglobulin‐like domains to induce a sharp kink in the DNA, exposing the damaged nucleobase to active site residues that project into the DNA. This active site can accommodate and excise N3‐methylcytosine (3mC) and N1‐methyladenine (1mA), which are also repaired by AlkB‐catalyzed oxidative demethylation, providing a potential alternative mechanism for repair of these lesions in bacteria.  相似文献   

11.
Demple B  Sung JS 《DNA Repair》2005,4(12):1442-1449
Many oxidative DNA lesions are handled well by base excision repair (BER), but some types may be problematic. Recent work indicates that 2-deoxyribonolactone (dL) is such a lesion by forming stable, covalent cross-links between the abasic residue and DNA repair proteins with lyase activity. In the case of DNA polymerase beta, the reaction is potentiated by incision of dL by Ape1, the major mammalian AP endonuclease. When repair is prevented, polymerase beta is the most reactive cross-linking protein in whole-cell extracts. Cross-linking with dL is largely avoided by processing the damage through the "long-patch" (multinucleotide) BER pathway. However, if excess damage leads to the accumulation of unrepaired oxidative lesions in DNA, there may be a danger of polymerase beta-mediated cross-link formation. Understanding how cells respond to such complex damage is an important issue. In addition to its role in defending against DNA damage caused by exogenous agents, Ape1 protein is essential for coping with the endogenous DNA damage in human cells grown in culture. Suppression of Ape1 using RNA-interference technology causes arrest of cell proliferation and activation of apoptosis in various cell types, correlated with the accumulation of unrepaired abasic DNA damage. Notably, all these effects are reversed by expression of the unrelated protein Apn1 of S. cerevisiae, which shares only the enzymatic repair function with Ape1 (AP endonuclease).  相似文献   

12.
A single polypeptide with ddNTP-sensitive DNA polymerase activity was purified to near homogeneity from the shoot tips of rice seedlings and analysis of the preparations by SDS-PAGE followed by silver staining showed a polypeptide of 67 kDa size. The DNA polymerase activity was found to be inhibitory by ddNTP in both in vitro DNA polymerase activity assay and activity gel analysis. Aphidicolin, an inhibitor of other types of DNA polymerases, had no effect on plant enzyme. The 67 kDa rice DNA polymerase was found to be recognized by the polyclonal antibody (purified IgG) made against rat DNA polymerase beta (pol beta) both in solution and also on Western blot. The recognition was found to be very specific as the activity of Klenow enzyme was unaffected by the antibody. The ability of rice nuclear extract to correct G:U mismatch of oligo-duplex was observed when oligo-duplex with 32P-labeled lower strand containing U (at 22nd position) was used as substrate. Differential appearance of bands at 21-mer, 22-mer, and 51-mer position in presence of dCTP was visible only with G:U mismatch oligo-duplex, but not with G:C oligo-duplex. While ddCTP or polyclonal antibody against rat-DNA pol beta inhibits base excision repair (BER), aphidicolin had no effect. These results for the first time clearly demonstrate the ability of rice nuclear extract to run BER and the involvement of ddNTP-sensitive pol beta type DNA polymerase. Immunological similarity of the ddNTP-sensitive DNA polymerase beta of rice and rat and its involvement in BER revealed the conservation of structure and function of ddNTP-sensitive DNA pol beta in plant and animal.  相似文献   

13.
A number of endogenous and exogenous agents, and cellular processes create abasic (AP) sites in DNA. If unrepaired, AP sites cause mutations, strand breaks and cell death. Aldehyde-reactive agent methoxyamine reacts with AP sites and blocks their repair. Another alkoxyamine, ARP, tags AP sites with a biotin and is used to quantify these sites. We have combined both these abilities into one alkoxyamine, AA3, which reacts with AP sites with a better pH profile and reactivity than ARP. Additionally, AA3 contains an alkyne functionality for bioorthogonal click chemistry that can be used to link a wide variety of biochemical tags to AP sites. We used click chemistry to tag AP sites with biotin and a fluorescent molecule without the use of proteins or enzymes. AA3 has a better reactivity profile than ARP and gives much higher product yields at physiological pH than ARP. It is simpler to use than ARP and its use results in lower background and greater sensitivity for AP site detection. We also show that AA3 inhibits the first enzyme in the repair of abasic sites, APE-1, to about the same extent as methoxyamine. Furthermore, AA3 enhances the ability of an alkylating agent, methylmethane sulfonate, to kill human cells and is more effective in such combination chemotherapy than methoxyamine.  相似文献   

14.
Poly(ADP-ribosyl)ation is a posttranslational protein modification significant for genomic stability and cell survival in response to DNA damage. Poly(ADP-ribosyl)ation is catalyzed by poly(ADP-ribose)polymerases (PARPs). Among the 17 members of the PARP family, PARP-1 and PARP-2 are described as enzymes whose catalytic activity is stimulated by some types of DNA damages.  相似文献   

15.
The 3,N(4)-ethenocytosine (epsilon C) residue might have biological role in vivo since it is recognized and efficiently excised in vitro by the E. coli mismatch-specific uracil-DNA glycosylase (MUG) and the human thymine-DNA glycosylase (hTDG). In the present work we have generated mug defective mutant of E. coli by insertion of a kanamycin cassette to assess the role of MUG in vivo. We show that human TDG complements the enzymatic activity of MUG when expressed in a mug mutant. The epsilon C-DNA glycosylase defective strain did not exhibit spontaneous mutator phenotype and did not show unusual sensitivity to any of the following DNA damaging treatments: methylmethanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet light, H(2)O(2), paraquat. However, plasmid DNA damaged by 2-chloroacetaldehyde treatment in vitro was inactivated at a greater rate in a mug mutant than in wild-type host, suggesting that MUG is required for the in vivo processing of the ethenobases. In addition, 2-chloroacetaldehyde treatment induces preferentially G.C --> C.G and A.T --> T.A transversions in mug mutant. Comparison of the mutation frequencies induced by the site-specifically incorporated epsilon C residue in E. coli wild-type versus mug indicates that MUG repairs more than 80% of epsilon C residues in vivo. Furthermore, the results show that nucleotide excision repair and recombination are not involved in the processing of epsilon C in E. coli. Based on the mutagenesis data we suggest that epsilon C may be less toxic and less mutagenic than expected. The increased spontaneous mutation rate for G.C --> A.T transition in the ung mug double mutant as compared to the single ung mutant suggest that MUG may be a back-up repair enzyme to the classic uracil-DNA glycosylase.  相似文献   

16.
There is an increasing demand for phenotyping assays in the field of human functional genetics. DNA repair activity is representative of this functional approach, being seen as a valuable biomarker related to cancer risk. Repair activity is evaluated by incubating a cell extract with a DNA substrate containing lesions specific for the DNA repair pathway of interest. Enzymic incision at the lesion sites can be measured by means of the comet assay (single cell gel electrophoresis). The assay is particularly applicable for evaluation of base and nucleotide excision repair pathways (BER and NER). Substrate DNA containing oxidised purines gives a measure of BER, while UV-induced photolesions are the substrate for NER. While applications of comet-based DNA repair assays continue to increase, there are no commonly accepted standard protocols, which complicates inter-laboratory comparisons of results.  相似文献   

17.
DNA repair enzymes induce base flipping in the process of damage recognition. Endonuclease V initiates the repair of cis, syn thymine dimers (TD) produced in DNA by UV radiation. The enzyme is known to flip the base opposite the damage into a non-specific binding pocket inside the protein. Uracil DNA glycosylase removes a uracil base from G.U mismatches in DNA by initially flipping it into a highly specific pocket in the enzyme. The contribution of base flipping to specific recognition has been studied by molecular dynamics simulations on the closed and open states of undamaged and damaged models of DNA. Analysis of the distributions of bending and opening angles indicates that enhanced base flipping originates in increased flexibility of the damaged DNA and the lowering of the energy difference between the closed and open states. The increased flexibility of the damaged DNA gives rise to a DNA more susceptible to distortions induced by the enzyme, which lowers the barrier for base flipping. The free energy profile of the base-flipping process was constructed using a potential of mean force representation. The barrier for TD-containing DNA is 2.5 kcal mol(-1) lower than that in the undamaged DNA, while the barrier for uracil flipping is 11.6 kcal mol(-1) lower than the barrier for flipping a cytosine base in the undamaged DNA. The final barriers for base flipping are approximately 10 kcal mol(-1), making the rate of base flipping similar to the rate of linear scanning of proteins on DNA. These results suggest that damage recognition based on lowering the barrier for base flipping can provide a general mechanism for other DNA-repair enzymes.  相似文献   

18.
Reactive oxygen species generate some 20,000 base lesions per human cell per day. The vast majority of these potentially mutagenic or cytotoxic lesions are subject to base excision repair (BER). Although chromatin remodelers have been shown to enhance the excision of oxidized bases from nucleosomes in vitro, it is not clear that they are recruited to and act at sites of BER in vivo. To test the hypothesis that cells possess factors that enhance BER in chromatin, we assessed the capacity of nuclear extracts from human cells to excise thymine glycol (Tg) lesions from exogenously added, model nucleosomes. The DNA glycosylase NTHL1 in these extracts was able to excise Tg from both naked DNA and sites in nucleosomes that earlier studies had shown to be sterically accessible. However, the same extracts were able to excise lesions from sterically-occluded sites in nucleosomes only after the addition of Mg2+/ATP. Gel mobility shift assays indicated that nucleosomes remain largely intact following the Mg2+/ATP −dependent excision reaction. Size exclusion chromatography indicated that the NTHL1-stimulating activity has a relatively low molecular weight, close to that of NTHL1 and other BER glycosylases; column fractions that contained the very large chromatin remodeling complexes did not exhibit this same stimulatory activity. These results indicate that cells possess a factor(s) that promotes the initiation of BER in chromatin, but differs from most known chromatin remodeling complexes.  相似文献   

19.
Unlike bacteria and mammals, plant DNA repair pathways are not well characterised, especially in monocots. The understanding of these processes in the plant cell is of major importance, since they may be directly involved in plant acclimation and adaptation to stressful environments. Hence, two sugarcane ESTs were identified as homologues of AP endonuclease from the base‐excision repair pathway: ScARP1 and ScARP3. In order to understand their probable function and evolutionary origin, structural and phylogenetic studies were performed using bioinformatics approaches. The two predicted proteins present a considerable amino acid sequence similarity, and molecular modelling procedures indicate that both are functional, since the main structural motifs remain conserved. However, inspection of the sort signal regions on the full‐length cDNAs indicated that these proteins have a distinct organelle target. Furthermore, variances in their promoter cis‐element motifs were also found. Although the mRNA expression pattern was similar, there were significant differences in their expression levels. Taken together, these data raise the hypothesis that the ScARP is an example of a probable gene duplication event that occurred before monocotyledon/dicotyledon segregation, followed by a sub‐functionalisation event in the Poaceae, leading to new intracellular targeting and different expression levels.  相似文献   

20.
Purified T7 phage, treated with methyl methanesulfonate, was assayed on four Escherichia coli K12 host cells: (1) AB1157, wild-type; (2) PK432-1, lacking 3-methyladenine-DNA glycosylase (tag); (3) NH5016, lacking apurinic endonuclease VI (xthA); (4) p3478, lacking DNA polymerase I (polA), the latter three strains being deficient in enzymes of the base excision repair pathway. For inactivation measured immediately after alkylation, phage survival was lowest on strains PK432-1 and p3478; for delayed inactivation, measured after partial depurination of alkylated phage, survival was much lower on strain p3478 than on PK432-1. These results demonstrate the important role played by 3-methyladenine-DNA glycosylase in the survival of methylated T7 phage. Quantitative analysis of the data, using the results of Verly et al. (Verly, W.G., Crine, P., Bannon, P. and Forget, A. (1974) Biochim. Biophys. Acta 349, 204–213) to correlate the dose with the number of methyl groups introduced into phage DNA, revealed that 5–10 3-methyladenine residues per T7 DNA constituted an inactivation hit for the tag mutant. Thus, 3-methyladenine may be as toxic a lesion as an apurinic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号