首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marmosets have reduced second molars of which size and shape are varied in different species. Mesiodistal and buccolingual diameter of the first and second upper molars in 16 species were measured, and molar area (molar rectangle) and M2 reduction index were calculated by the equation,R=(M2 area/M1 area) × 100. This index ranged from 36.1 inSaguinus oedipus geoffroyi to 70.6 which was the largest found inCebuella pygmaea. Species ofSaguinus showed relatively wide variation as well as a consistantly smaller index. The index forCallithrix registered around 60 andLeontopithecus rosalia was positioned within this genus. There was no relationship between this index and body size of each form. The sizes of the first molar and second molar may not significantly correlate either with body size across species, becauseLeontopithecus rosalia had exceptionally large molars for its body size and contrarily genusSaguinus had relatively small molars. When the shape of the mandible was expressed as length/width ratio, the reduction index significantly correlate with this ratio in genusSaguinus andCallithrix, indicating that longer jaw in shape had relatively large M2. The reduction indices of two possible subspecies,S. oedipus geoffroyi andS. o. oedipus, were 36.1 and 47.3, respectively. This difference suggested that there was a difference in diet or function of jaw apparatus beyond subspecies level.  相似文献   

2.
Among 234 children examined annually from age three to 20 years at the Burlington Growth Centre, there was statistically significant cooccurrence of early and late emergence sequences of the permanent first and second molars relative to the central incisors and second premolars in the same jaw and in both jaws. Alternatively, mandibular molar delay was not accompanied by corresponding maxillary molar delay, and the mandibular molars emerged later than the maxillary molars. This was strongly associated with Angle Class II malocclusion, indicating a relationship between relative time of emergence and relative position of opposing molars. Delay of the mandibular molar relative to the successional teeth or maxillary molars was associated with increased frequency of four cusped first and second molars and agenesis of third molars, indicating a tendency for co-occurrence of delay in timing of molar emergence with reduction in structure of the molars. These relationships were evident even though emergences were affected by early loss of a deciduous second molar which increased M1I1 and M2P2 sequences by earlier emergence of M1 and delayed emergence of P2.  相似文献   

3.
Developmental origins that guide the evolution of dental morphology and dental formulae are fundamental subjects in mammalian evolution. In a previous study, a developmental model termed the inhibitory cascade model was established. This model could explain variations in relative molar sizes and loss of the lower third molars, which sometimes reflect diet, in murine rodents and other mammals. Here, I investigated the pattern of relative molar sizes (inhibitory cascade pattern) in canids, a taxon exhibiting a wide range of dietary habits. I found that interspecific variation in canid molars suggests a unique inhibitory cascade pattern that differs from that in murine rodents and other previously reported mammals, and that this variation reflects dietary habits. This unique variability in molars was also observed in individual variation in canid species. According to these observations, canid species have greater variability in the relative sizes of first molars (carnassials), which are functionally important for dietary adaptation in the Carnivora. In conclusion, an inhibitory cascade that differs from that in murine rodents and other mammals may have contributed to diverse dietary patterns and to their parallel evolution in canids.  相似文献   

4.
5.
6.
The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) families of ATP-dependent chromatin remodeling enzymes are established co-regulators of gene expression. mSWI/SNF complexes can be assembled into three major subfamilies: BAF (BRG1 or BRM-Associated Factor), PBAF (Polybromo containing BAF), or ncBAF (non-canonical BAF) that are distinguished by the presence of mutually exclusive subunits. The mechanisms by which each subfamily contributes to the establishment or function of specific cell lineages are poorly understood. Here, we determined the contributions of the BAF, ncBAF, and PBAF complexes to myoblast proliferation via knock down (KD) of distinguishing subunits from each complex. KD of subunits unique to the BAF or the ncBAF complexes reduced myoblast proliferation rate, while KD of PBAF-specific subunits did not affect proliferation. RNA-seq from proliferating KD myoblasts targeting Baf250A (BAF complex), Brd9 (ncBAF complex), or Baf180 (PBAF complex) showed mis-regulation of a limited number of genes. KD of Baf250A specifically reduced the expression of Pax7, which is required for myoblast proliferation, concomitant with decreased binding of Baf250A to and impaired chromatin remodeling at the Pax7 gene promoter. Although Brd9 also bound to the Pax7 promoter, suggesting occupancy by the ncBAF complex, no changes were detected in Pax7 gene expression, Pax7 protein expression or chromatin remodeling at the Pax7 promoter upon Brd9 KD. The data indicate that the BAF subfamily of the mSWI/SNF enzymes is specifically required for myoblast proliferation via regulation of Pax7 expression.  相似文献   

7.
Rodents have a toothless diastema region between the incisor and molar teeth which may contain rudimentary tooth germs. We found in upper diastema region of the mouse (Mus musculus) three small tooth germs which developed into early bud stage before their apoptotic removal, while the sibling vole (Microtus rossiaemeridionalis) had only a single but larger tooth germ in this region, and this developed into late bud stage before regressing apoptotically. To analyze the genetic mechanisms of the developmental arrest of the rudimentary tooth germs we compared the expression patterns of several developmental regulatory genes (Bmp2, Bmp4, Fgf4, Fgf8, Lef1, Msx1, Msx2, p21, Pitx2, Pax9 and Shh) between molars and diastema buds of mice and voles. In diastema tooth buds the expression of all the genes differed from that of molars. The gene expression patterns suggest that the odontogenic program consists of partially independent signaling cascades which define the exact location of the tooth germ, initiate epithelial budding, and transfer the odontogenic potential from the epithelium to the underlying mesenchyma. Although the diastema regions of the two species differed, in both species the earliest difference that we found was weaker expression of mesenchymal Pax9 in the diastema region than in molar and incisor regions at the dental lamina stage. However, based on earlier tissue recombination experiments it is conceivable that the developmental arrest is determined by the early oral epithelium. Received: 1 February 1999 / Accepted: 30 March 1999  相似文献   

8.
9.
Dental casts of 160 Greek subjects (80 males, 80 females) were scanned by a structured‐light scanner. The upper and lower right first molar occlusal surface 3D meshes were processed using geometric morphometric methods. A total of 265 and 274 curve and surface sliding semilandmarks were placed on the upper and lower molar surfaces, respectively. Principal component analysis and partial least square analysis were performed to assess shape parameters. Molars tended to vary between an elongated and a more square form. The first two principal components (PCs), comprising almost 1/3 of molar shape variation, were related to mesiodistal–buccolingual ratios and relative cusp position. Distal cusps displayed the greatest shape variability. Molars of males were larger than those of females (2.8 and 3.2% for upper and lower molars respectively), but no shape dimorphism was observed. Upper and lower molar sizes were significantly correlated (r2 = 0.689). Allometry was observed for both teeth. Larger lower molars were associated with shorter cusps, expansion of the distal cusp, and constriction of the mesial cusps (predicted variance 3.25%). Upper molars displayed weaker allometry (predicted variance 1.59%). Upper and lower molar shape covariation proved significant (RV = 17.26%, P < 0.0001). The main parameter of molar covariation in partial least square axis 1, contributing to 30% of total covariation, was cusp height, in contrast to the primary variability traits exhibited by PC1 and PC2. The aim of this study was to evaluate shape variation and covariation, including allometry and sexual dimorphism, of maxillary and mandibular first permanent molar occlusal surfaces. Am J Phys Anthropol 152:186–196, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
AimTo compare the angular changes of the third molars relative to the occlusal plane and to the second molar long axis in extraction group and compare these changes with a non extraction group.Materials and methodsThe study included pre and post treatment panoramic radiograph records of 90 subjects treated by first premolar extractions and 90 subjects who had been treated with non extraction orthodontic therapy (n = 90). Two angular variables were measured. Firstly, the angle between the long axis of the third molar and the occlusal plane (M3–OP) and secondly, the angle between the long axis of the third molar and the long axis of the second molar (M3–M2). Data were analyzed by paired and student’s t-test.ResultThe analyzed data to assess the changes in the third molar angulation from pretreatment to post treatment did not vary significantly in both the groups (p < 0.05). Both the groups showed decreased angular values. The M3–OP angular difference was (−7.3 ± 2.45) in extraction group as compared to (−5.85 ± 1.77) in non extraction group. The M3–M2 angular difference of (−4.26 ± 3.11) in extraction group and (−2.98 ± 1.74) in non-extraction group was observed.ConclusionExtraction of premolars did not demonstrate considerable changes on the angulation of the third molars. The factors other than premolar extractions may influence the angulation of the third molars.  相似文献   

11.
Accumulating evidence suggests that Pax5 plays essential roles in B cell lineage commitment. However, molecular mechanisms of B cell-specific expression of Pax5 are not fully understood. Here, we applied insertional chromatin immunoprecipitation (iChIP) combined with stable isotope labeling using amino acids in cell culture (SILAC) (iChIP-SILAC) to direct identification of proteins interacting with the promoter region of the endogenous single-copy chicken Pax5 gene. By comparing B cells with macrophage-like cells trans-differentiated by ectopic expression of C/EBPβ, iChIP-SILAC detected B cell-specific interaction of a nuclear protein, Thy28/Thyn1, with the Pax5 1A promoter. Trans-differentiation of B cells into macrophage-like cells caused down-regulation of Thy28 expression. Loss-of-function of Thy28 induced decrease in Pax5 expression and recruitment of myosin-9 (MYH9), one of Thy28-interacting proteins, to the Pax5 1A promoter. Loss-of-function of MYH9 also induced decrease in Pax5 expression. Thus, our analysis revealed that Thy28 is functionally required for B cell-specific expression of Pax5 via recruitment of MYH9 to the Pax5 locus in chicken B cells.  相似文献   

12.
Carnivora is a successful taxon in terms of dietary diversity. We investigated the dietary adaptations of carnivoran dentition and the developmental background of their dental diversity, which may have contributed to the success of the lineage. A developmental model was tested and extended to explain the unique variability and exceptional phenotypes observed in carnivoran dentition. Carnivorous mammalian orders exhibited two distinct patterns of dietary adaptation in molars and only Carnivora evolved novel variability, exhibiting a high correlation between relative molar size and the shape of the first molar. Studies of Bmp7-hetero-deficient mice, which may exhibit lower Bmp7 expression, suggested that Bmp7 has pleiotropic effects on these two dental traits. Its effects are consistent with the pattern of dietary adaptation observed in Carnivora, but not that observed in other carnivorous mammals. A molecular evolutionary analysis revealed that Bmp7 sequence evolved by natural selection during ursid evolution, suggesting that it plays an evolutionary role in the variation of carnivoran dentition. Using mouse experiments and a molecular evolutionary analysis, we extrapolated the causal mechanism of the hitherto enigmatic ursid dentition (larger M2 than M1 and M3). Our results demonstrate how carnivorans acquired novel dental variability that benefits their dietary divergence.  相似文献   

13.
Nucleotide sequences of b/c intron of the mitochondrial gene nad1 were determined for the first time and analyzed in 24 plants of Monotropa hypopitys and in three related Ericaceae species. Two mitotypes of b/c intron of the nad1 gene, differing in sequence lengths and the presence of a number of single nucleotide substitutions and indels, were revealed in M. hypopitys. For the first time, a possible pre-mRNA secondary structure of M. hypopitys b/c intron was determined and IBS/EBS binding sites and the borders of six functional domains were identified.  相似文献   

14.
15.
In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.  相似文献   

16.
Tooth development requires proliferation, differentiation, and specific migration of dental epithelial cells, through well-organized signaling interactions with mesenchymal cells. Recently, it has been reported that leucine-rich repeat-containing G protein coupled receptor 4 (LGR4), the receptor of R-spondins, is expressed in many epithelial cells in various organs and tissues and is essential for organ development and stem cell maintenance. Here, we report that LGR4 contributes to the sequential development of molars in mice. LGR4 expression in dental epithelium was detected in SOX2+ cells in the posterior end of the second molar (M2) and the early tooth germ of the third molar (M3). In keratinocyte-specific Lgr4-deficient mice (Lgr4K5 KO), the developmental defect became obvious by postnatal day 14 (P14) in M3. Lgr4K5 KO adult mice showed complete absence or the dwarfed form of M3. In M3 development in Lgr4K5 KO mice, at Wnt/β-catenin signal activity was down-regulated in the dental epithelium at P3, as indicated by lymphoid enhancer-binding factor-1 (LEF1) expression. We also confirmed the decrease, in dental epithelium of Lgr4K5 KO mice, of the number of SOX2+ cells and the arrest of cell proliferation at P7, and observed abnormal differentiation at P14. Our data demonstrated that LGR4 controls the sequential development of molars by maintaining SOX2+ cells in the dental epithelium, which have the ability to form normal molars.  相似文献   

17.
Four novel 4-(1H-imidazo[4,5-f]-1,10-phenanthrolin-2-yl)phenol derivatives 14 have been synthesized, and their G-quadruplex DNA-binding interactions, telomerase inhibition, antiproliferative activity, cell cycle arrest, and apoptotic induction were studied. All compounds show the preferential h-telo, c-myc, and c-kit2 G-quadruplex binding affinity and the G-quadruplex versus duplex selectivity. In the case of the same G-quadruplex target, the compound 1 exhibits better stabilization effect (ΔTm) than the other three compounds and also gives 80.2% inhibition of telomerase activity at 7.5 μM. All compounds can promote selectively the formation of parallel G-quadruplex structure of both c-myc and c-kit2 without addition of any cations. Four compounds display the cytotoxicity activities against HeLa and HepG2 cells by MTT assay with IC50 values of about 10?6 and 10?5 M, respectively, and cause a substantial decrease in the G2/M-phase cell population and a significant increase in the number of apoptotic cells.  相似文献   

18.
Neanderthals have a distinctive suite of dental features, including large anterior crown and root dimensions and molars with enlarged pulp cavities. Yet, there is little known about variation in molar root morphology in Neanderthals and other recent and fossil members of Homo. Here, we provide the first comprehensive metric analysis of permanent mandibular molar root morphology in Middle and Late Pleistocene Homo neanderthalensis, and Late Pleistocene (Aterian) and recent Homo sapiens. We specifically address the question of whether root form can be used to distinguish between these groups and assess whether any variation in root form can be related to differences in tooth function. We apply a microtomographic imaging approach to visualise and quantify the external and internal dental morphologies of both isolated molars and molars embedded in the mandible (n = 127). Univariate and multivariate analyses reveal both similarities (root length and pulp volume) and differences (occurrence of pyramidal roots and dental tissue volume proportion) in molar root morphology among penecontemporaneous Neanderthals and Aterian H. sapiens. In contrast, the molars of recent H. sapiens are markedly smaller than both Pleistocene H. sapiens and Neanderthals, but share with the former the dentine volume reduction and a smaller root-to-crown volume compared with Neanderthals. Furthermore, we found the first molar to have the largest average root surface area in recent H. sapiens and Neanderthals, although in the latter the difference between M1 and M2 is small. In contrast, Aterian H. sapiens root surface areas peak at M2. Since root surface area is linked to masticatory function, this suggests a distinct occlusal loading regime in Neanderthals compared with both recent and Pleistocene H. sapiens.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号