首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida auris is an emerging fungal pathogen of rising concern due to global spread, the ability to cause healthcare-associated outbreaks, and antifungal resistance. Genomic analyses revealed that early contemporaneously detected cases of C. auris were geographically stratified into four major clades. While Clades I, III, and IV are responsible for ongoing outbreaks of invasive and multidrug-resistant infections, Clade II, also termed the East Asian clade, consists primarily of cases of ear infection, is often susceptible to all antifungal drugs, and has not been associated with outbreaks. Here, we generate chromosome-level assemblies of twelve isolates representing the phylogenetic breadth of these four clades and the only isolate described to date from Clade V. This Clade V genome is highly syntenic with those of Clades I, III, and IV, although the sequence is highly divergent from the other clades. Clade II genomes appear highly rearranged, with translocations occurring near GC-poor regions, and large subtelomeric deletions in most chromosomes, resulting in a substantially different karyotype. Rearrangements and deletion lengths vary across Clade II isolates, including two from a single patient, supporting ongoing genome instability. Deleted subtelomeric regions are enriched in Hyr/Iff-like cell-surface proteins, novel candidate cell wall proteins, and an ALS-like adhesin. Cell wall proteins from these families and other drug-related genes show clade-specific signatures of selection in Clades I, III, and IV. Subtelomeric dynamics and the conservation of cell surface proteins in the clades responsible for global outbreaks causing invasive infections suggest an explanation for the different phenotypes observed between clades.  相似文献   

2.
SUMMARY Insight into the origin and early evolution of the animal phyla requires an understanding of how animal groups are related to one another. Thus, we set out to explore animal phylogeny by analyzing with maximum parsimony 138 morphological characters from 40 metazoan groups, and 304 18S rDNA sequences, both separately and together. Both types of data agree that arthropods are not closely related to annelids: the former group with nematodes and other molting animals (Ecdysozoa), and the latter group with molluscs and other taxa with spiral cleavage. Furthermore, neither brachiopods nor chaetognaths group with deuterostomes; brachiopods are allied with the molluscs and annelids (Lophotrochozoa), whereas chaetognaths are allied with the ecdysozoans. The major discordance between the two types of data concerns the rooting of the bilaterians, and the bilaterian sister-taxon. Morphology suggests that the root is between deuterostomes and protostomes, with ctenophores the bilaterian sister-group, whereas 18S rDNA suggests that the root is within the Lophotrochozoa with acoel flatworms and gnathostomulids as basal bilaterians, and with cnidarians the bilaterian sister-group. We suggest that this basal position of acoels and gnathostomulids is artifactal because for 1000 replicate phylogenetic analyses with one random sequence as outgroup, the majority root with an acoel flatworm or gnathostomulid as the basal ingroup lineage. When these problematic taxa are eliminated from the matrix, the combined analysis suggests that the root lies between the deuterostomes and protostomes, and Ctenophora is the bilaterian sister-group. We suggest that because chaetognaths and lophophorates, taxa traditionally allied with deuterostomes, occupy basal positions within their respective protostomian clades, deuterostomy most likely represents a suite of characters plesiomorphic for bilaterians.  相似文献   

3.
4.
5.
Marine picocyanobacteria, comprised of the genera Synechococcus and Prochlorococcus, are the most abundant and widespread primary producers in the ocean. More than 20 genetically distinct clades of marine Synechococcus have been identified, but their physiology and biogeography are not as thoroughly characterized as those of Prochlorococcus. Using clade-specific qPCR primers, we measured the abundance of 10 Synechococcus clades at 92 locations in surface waters of the Atlantic and Pacific Oceans. We found that Synechococcus partition the ocean into four distinct regimes distinguished by temperature, macronutrients and iron availability. Clades I and IV were prevalent in colder, mesotrophic waters; clades II, III and X dominated in the warm, oligotrophic open ocean; clades CRD1 and CRD2 were restricted to sites with low iron availability; and clades XV and XVI were only found in transitional waters at the edges of the other biomes. Overall, clade II was the most ubiquitous clade investigated and was the dominant clade in the largest biome, the oligotrophic open ocean. Co-occurring clades that occupy the same regime belong to distinct evolutionary lineages within Synechococcus, indicating that multiple ecotypes have evolved independently to occupy similar niches and represent examples of parallel evolution. We speculate that parallel evolution of ecotypes may be a common feature of diverse marine microbial communities that contributes to functional redundancy and the potential for resiliency.  相似文献   

6.
Glycoside hydrolase family 18 (GH18) includes chitinases and non-enzymatic chitinase-like proteins (CLPs) with representatives among eukaryotes (animals and plants), prokaryotes and viruses. In Lophotrochozoa, one of the three clades of bilaterian animals, only three members (Cg-Clp1, Cg-Clp2 and Cg-Chit) have been reported from the bivalve mollusc Crassostrea gigas. Here, we describe the cloning and the characterization of two additional chitinases (Cg-Chit2 and Cg-Chit3) and a new CLP (Cg-Clp3) from this species. Cg-Chit2 presents an atypical C-terminal hydrophobic region acting probably as a GPI-anchor signal for plasma membrane attachment. On the contrary, Cg-Chit3 displays a C-terminal truncated structure leading to a possible sequestration in lysosomes. Phylogenetic analyses suggest that CLPs have appeared independently in the three main branches of bilaterian animals, as a result of convergent evolution. Gene expression profiles analyzed by quantitative RT-PCR support the involvement of Cg-Clp3 in embryonic development, adult oyster growth and tissue remodelling during metamorphosis and gonadal restructuring.  相似文献   

7.

Background

In many eukaryotes, microRNAs (miRNAs) bind to complementary sites in the 3'-untranslated regions (3'-UTRs) of target messenger RNAs (mRNAs) and regulate their expression at the stage of translation. Recent studies have revealed that many miRNAs are evolutionarily conserved; however, the evolution of their target genes has yet to be systematically characterized. We sought to elucidate a set of conserved miRNA/target-gene pairs and to analyse the mechanism underlying miRNA-mediated gene regulation in the early stage of bilaterian evolution.

Results

Initially, we extracted five evolutionarily conserved miRNAs (let-7, miR-1, miR-124, miR-125/lin-4, and miR-34) among five diverse bilaterian animals. Subsequently, we designed a procedure to predict evolutionarily conserved miRNA/target-gene pairs by introducing orthologous gene information. As a result, we extracted 31 orthologous miRNA/target-gene pairs that were conserved among at least four diverse bilaterian animals; the prediction set showed prominent enrichment of orthologous miRNA/target-gene pairs that were verified experimentally. Approximately 84% of the target genes were regulated by three miRNAs (let-7, miR-1, and miR-124) and their function was classified mainly into the following categories: development, muscle formation, cell adhesion, and gene regulation. We used a reporter gene assay to experimentally verify the downregulation of six candidate pairs (out of six tested pairs) in HeLa cells.

Conclusions

The application of our new method enables the identification of 31 miRNA/target-gene pairs that were expected to have been regulated from the era of the common bilaterian ancestor. The downregulation of all six candidate pairs suggests that orthologous information contributed to the elucidation of the primordial set of genes that has been regulated by miRNAs; it was also an efficient tool for the elimination of false positives from the predicted candidates. In conclusion, our study identified potentially important miRNA-target pairs that were evolutionarily conserved throughout diverse bilaterian animals and that may provide new insights into early-stage miRNA functions.  相似文献   

8.
Acoelomorphs are bilaterally symmetric small marine worms that lack a coelom and possess a digestive system with a single opening. Two alternative phylogenetic positions of this group within the animal tree are currently debated. In one view, Acoelomorpha is the sister group to all remaining Bilateria and as such, is a morphologically simple stepping stone in bilaterian evolution. In the other, the group is a lineage within the Deuterostomia, and therefore, has derived a simple morphology from a more complex ancestor. Acoels and the closely related Nemertodermatida and Xenoturbellida, which together form the Acoelomorpha, possess a very limited number of cell types. To further investigate the diversity and origin of mesodermal cell types we describe the expression pattern of 12 orthologs of bilaterian mesodermal markers including Six1/2, Twist, FoxC, GATA4/5/6, in the acoel Isodiametra pulchra. All the genes are expressed in stem cells (neoblasts), gonads, and at least subsets of the acoel musculature. Most are expressed in endomesodermal compartments of I. pulchra developing embryos similar to what has been described in cnidarians. Our molecular evidence indicates a very limited number of mesodermal cell types and suggests an endomesodermal origin of the gonads and the stem cell system. We discuss our results in light of the two prevailing phylogenetic positions of Acoelomorpha.  相似文献   

9.
Fossils described as Vernanimalcula guizhouena, from the nearly 600 million‐year‐old Doushantuo Formation in South China, have been interpreted as the remains of bilaterian animals. As such they would represent the oldest putative record of bilaterian animals in Earth history, and they have been invoked in debate over this formative episode of early animal evolution. However, this interpretation is fallacious. We review the evidential basis of the biological interpretation of Vernanimalcula, concluding that the structures key to animal identity are effects of mineralization that do not represent biological tissues, and, furthermore, that it is not possible to derive its anatomical reconstruction on the basis of the available evidence. There is no evidential basis for interpreting Vernanimalcula as an animal, let alone a bilaterian. The conclusions of evolutionary studies that have relied upon the bilaterian interpretation of Vernanimalcula must be called into question.  相似文献   

10.
11.
Wood anatomy is one of the tools used for taxonomic classification of species. By combining this tool with molecular phylogeny, the current groupings made in morphological studies can be discussed. This study describes the wood anatomy of the monotypic genera of Cupressaceae and analyses the features that could represent synapomorphies of the principal clades recovered by molecular phylogeny. The wood anatomical study shows the high homogeneity of this family, revealing the presence of common ancestral features that support the union between Taxodiaceae and Cupressaceae s.s. and the separation of Sciadopitys. It also supports the group formed by Taxodiaceae in Cupressaceae s.l. No clear division was observed between the callitroid and cupressoid clades. Some wood anatomical differences were observed in the FitzroyaDiselmaPilgerodendron and MicrobiotaPlatycladusTetraclinis associations. The wood anatomical features common to the family, such as axial tracheids without helical thickenings, homogeneous rays, cupressoid cross-field pits and the presence of a warty layer, are put forward as possible synapomorphies for Cupressaceae s.l. The clade-specific synapomorphies are taxodioid cross-field pits for taxodioid and sequoioid clades, absence of a well-defined torus in ThujaThujopsis and torus extensions in DiselmaFitzroyaWiddringtonia.  相似文献   

12.
Complex animals display bilaterally asymmetric motor behavior, or “motor handedness,” often revealed by preferential use of limbs on one side. For example, use of right limbs is dominant in a strong majority of humans. While the mechanisms that establish bilateral asymmetry in motor function are unknown in humans, they appear to be distinct from those for other handedness asymmetries, including bilateral visceral organ asymmetry, brain laterality, and ocular dominance. We report here that a simple, genetically homogeneous animal comprised of only ∼1000 somatic cells, the nematode C. elegans, also shows a distinct motor handedness preference: on a population basis, males show a pronounced right-hand turning bias during mating. The handedness bias persists through much of adult lifespan, suggesting that, as in more complex animals, it is an intrinsic trait of each individual, which can differ from the population mean. Our observations imply that the laterality of motor handedness preference in C. elegans is driven by epigenetic factors rather than by genetic variation. The preference for right-hand turns is also seen in animals with mirror-reversed anatomical handedness and is not attributable to stochastic asymmetric loss of male sensory rays that occurs by programmed cell death. As with C. elegans, we also observed a substantial handedness bias, though not necessarily the same preference in direction, in several gonochoristic Caenorhabditis species. These findings indicate that the independence of bilaterally asymmetric motor dominance from overall anatomical asymmetry, and a population-level tendency away from ambidexterity, occur even in simple invertebrates, suggesting that these may be common features of bilaterian metazoans.  相似文献   

13.
Inspired by molecular clock estimates, some biologists have proposed that animals in general, and bilaterian metazoans in particular, began to diverge substantially earlier than fossils indicate. Balavoine and Adoutte [Science 280 (1998) 397] specifically hypothesized that the Cambrian explosion documents parallel radiations within three major bilaterian clades that diverged from one another relatively early in the Neoproterozoic Era. The geological record is permissive with respect to such hypotheses, but not encouraging. The earliest evolution of animals certainly took place before the initial appearance of phosphatic animal microfossils or Ediacaran macrofossils, but bilaterian clades need not have been part of this metazoan “pre-history”. Alternatively, the evolution of large size, made possible by late Neoproterozoic oxygen increase, may have provided the selective environment in which stem bilaterians differentiated. Cambrian events per se appear to have begun in the wake of environmental perturbation and accompanying extinction near the Proterozoic–Cambrian boundary.  相似文献   

14.
Flatworms are classically considered to represent the simplest organizational form of all living bilaterians with a true central nervous system. Based on their simple body plans, all flatworms have been traditionally grouped together in a single phylum at the base of the bilaterians. Current molecular phylogenomic studies now split the flatworms into two widely separated clades, the acoelomorph flatworms and the platyhelminth flatworms, such that the last common ancestor of both clades corresponds to the urbilaterian ancestor of all bilaterian animals. Remarkably, recent comparative neuroanatomical analyses of acoelomorphs and platyhelminths show that both of these flatworm groups have complex anterior brains with surprisingly similar basic neuroarchitectures. Taken together, these findings imply that fundamental neuroanatomical features of the brain in the two separate flatworm groups are likely to be primitive and derived from the urbilaterian brain.  相似文献   

15.
Recent hypotheses on metazoan phylogeny have recognized three main clades of bilaterian animals: Deuterostomia, Ecdysozoa and Lophotrochozoa. The acoelomate and 'pseudocoelomate' metazoans, including the Platyhelminthes, long considered basal bilaterians, have been referred to positions within these clades by many authors. However, a recent study based on ribosomal DNA placed the flatworm group Acoela as the sister group of all other extant bilaterian lineages. Unexpectedly, the nemertodermatid flatworms, usually considered the sister group of the Acoela together forming the Acoelomorpha, were grouped separately from the Acoela with the rest of the Platyhelminthes (the Rhabditophora) within the Lophotrochozoa. To re-evaluate and clarify the phylogenetic position of the Nemertodermatida, new sequence data from 18S ribosomal DNA and mitochondrial genes of nemertodermatid and other bilaterian species were analysed with parsimony and maximum likelihood methods. The analyses strongly support a basal position within the Bilateria for the Nemertodermatida as a sister group to all other bilaterian taxa except the Acoela. Despite the basal position of both Nemertodermatida and Acoela, the clade Acoelomorpha was not retrieved. These results imply that the last common ancestor of bilaterian metazoans was a small, benthic, direct developer without segments, coelomic cavities, nephrida or a true brain. The name Nephrozoa is proposed for the ancestor of all bilaterians excluding the Nemertodermatida and the Acoela, and its descendants.  相似文献   

16.
Prerequisite for tracing nervous system evolution is understanding of the body plan, feeding behaviour and locomotion of the first animals in which neurons evolved. Here, a comprehensive scenario is presented for the diversification of cell types in early metazoans, which enhanced feeding efficiency and led to the emergence of larger animals that were able to move. Starting from cup-shaped, gastraea-like animals with outer and inner choanoflagellate-like cells, two major innovations are discussed that set the stage for nervous system evolution. First, the invention of a mucociliary sole entailed a switch from intra- to extracellular digestion and increased the concentration of nutrients flowing into the gastric cavity. In these animals, an initial nerve net may have evolved via division of labour from mechanosensory-contractile cells in the lateral body wall, enabling coordinated movement of the growing body that involved both mucociliary creeping and changes of body shape. Second, the inner surface of the animals folded into metameric series of gastric pouches, which optimized nutrient resorption and allowed larger body sizes. The concomitant acquisition of bilateral symmetry may have allowed more directed locomotion and, with more demanding coordinative tasks, triggered the evolution of specialized nervous subsystems. Animals of this organizational state would have resembled Ediacarian fossils such as Dickinsonia and may have been close to the cnidarian–bilaterian ancestor. In the bilaterian lineage, the mucociliary sole was used mostly for creeping, or frequently lost. One possible remnant is the enigmatic Reissner''s fibre in the ventral neural tube of cephalochordates and vertebrates.  相似文献   

17.
Miocene hominoid biogeography: pulses of dispersal and differentiation   总被引:2,自引:0,他引:2  
Aim  To test the hypothesis that the ancestor of the hominines (African apes and humans) had an African origin by comparing the historical biogeographical patterns of hominoids with those of two other large land mammal clades, namely the hyaenids and proboscideans.
Location  Global, primarily the Old World over the last 25 Myr (Miocene to present).
Methods  Creation of a general area cladogram using pact , a new method for generating area cladograms, and interpretation of general and clade-specific speciation events involving hominoids, proboscideans and hyaenids.
Results  The analysis of the areas using pact reveals both general patterns and clade-specific exceptions to these patterns. All three groups share a general episode of species formation in Africa in the early Miocene, followed by 'out of Africa' expansion into Europe, Asia and North America, and a second general episode of species formation in Asia in the mid-Miocene, followed by 'out of Asia' expansion into Africa, Europe and North America. Finally, there were two additional 'out of Africa' events during the late Miocene and into the Pliocene, the last one setting the stage for the emergence and spread of Homo . In addition to these shared episodes of vicariance and dispersal, each group exhibits clade-specific within-area and peripatric speciation events.
Main conclusions  The complex history of dispersal and speciation over large areas exhibited by hominoids is part of a more general history of biotic diversification by taxon pulses. Refining this scenario will require the integration of additional clades from the same areas and times, as well as more detailed palaeoclimatological, palaeoenvironmental and geological evidence.  相似文献   

18.
The ionotropic glutamate receptor (iGluR) gene family has been widely studied in animals and is determined to be important in excitatory neurotransmission and other neuronal processes. We have previously identified ionotropic glutamate receptor-like genes (GLRs) in Arabidopsis thaliana, an organism that lacks a nervous system. Upon the completion of the Arabidopsis genome sequencing project, a large family of GLR genes has been uncovered. A preliminary phylogenetic analysis divides the AtGLR gene family into three clades and is used as the basis for the recently established nomenclature for the AtGLR gene family. We performed a phylogenetic analysis with extensive annotations of the iGluR gene family, which includes all 20 Arabidopsis GLR genes, the entire iGluR family from rat (except NR3), and two prokaryotic iGluRs, Synechocystis GluR0 and Anabaena GluR. Our analysis supports the division of the AtGLR gene family into three clades and identifies potential functionally important amino acid residues that are conserved in both prokaryotic and eukaryotic iGluRs as well as those that are only conserved in AtGLRs. To begin to investigate whether the three AtGLR clades represent different functional classes, we performed the first comprehensive mRNA expression analysis of the entire AtGLR gene family. On the basis of RT-PCR, all AtGLRs are expressed genes. The three AtGLR clades do not show distinct clade-specific organ expression patterns. All 20 AtGLR genes are expressed in the root. Among them, five of the nine clade-II genes are root-specific in 8-week-old Arabidopsis plants.  相似文献   

19.
The glycosyltransferase family 43 (GT43) has been suggested to be involved in the synthesis of xylans in plant cell walls and proteoglycans in animals. Very recently GT43 family was also found in Charophycean green algae (CGA), the closest relatives of extant land plants. Here we present evidence that non-plant and non-animal early eukaryotes such as fungi, Haptophyceae, Choanoflagellida, Ichthyosporea and Haptophyceae also have GT43-like genes, which are phylogenetically close to animal GT43 genes. By mining RNA sequencing data (RNA-Seq) of selected plants, we showed that CGA have evolved three major groups of GT43 genes, one orthologous to IRX14 (IRREGULAR XYLEM14), one orthologous to IRX9/IRX9L and the third one ancestral to all land plant GT43 genes. We confirmed that land plant GT43 has two major clades A and B, while in angiosperms, clade A further evolved into three subclades and the expression and motif pattern of A3 (containing IRX9) are fairly different from the other two clades likely due to rapid evolution. Our in-depth sequence analysis contributed to our overall understanding of the early evolution of GT43 family and could serve as an example for the study of other plant cell wall-related enzyme families.  相似文献   

20.
The genomes of taxa whose stem lineages branched early in metazoan history, and of allied protistan groups, provide a tantalizing outline of the morphological and genomic changes that accompanied the origin and early diversifications of animals. Genome comparisons show that the early clades increasingly contain genes that mediate development of complex features only seen in later metazoan branches. Peak additions of protein‐coding regulatory genes occurred deep in the metazoan tree, evidently within stem groups of metazoans and eumetazoans. However, the bodyplans of these early‐branching clades are relatively simple. The existence of major elements of the bilaterian developmental toolkit in these simpler organisms implies that these components evolved for functions other than the production of complex morphology, preadapting the genome for the morphological differentiation that occurred higher in metazoan phylogeny. Stem lineages of the bilaterian phyla apparently required few additional genes beyond their diploblastic ancestors. As disparate bodyplans appeared and diversified during the Cambrian explosion, increasing complexity was accommodated largely through changes in cis‐regulatory networks, accompanied by some additional gene novelties. Subsequently, protein‐coding genic richness appears to have essentially plateaued. Some genomic evidence suggests that similar stages of genomic evolution may have accompanied the rise of land plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号