首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The discrete regulation of supercoiling, catenation and knotting by DNA topoisomerases is well documented both in vivo and in vitro, but the interplay between them is still poorly understood. Here we studied DNA catenanes of bacterial plasmids arising as a result of DNA replication in Escherichia coli cells whose topoisomerase IV activity was inhibited. We combined high-resolution two-dimensional agarose gel electrophoresis with numerical simulations in order to better understand the relationship between the negative supercoiling of DNA generated by DNA gyrase and the DNA interlinking resulting from replication of circular DNA molecules. We showed that in those replication intermediates formed in vivo, catenation and negative supercoiling compete with each other. In interlinked molecules with high catenation numbers negative supercoiling is greatly limited. However, when interlinking decreases, as required for the segregation of newly replicated sister duplexes, their negative supercoiling increases. This observation indicates that negative supercoiling plays an active role during progressive decatenation of newly replicated DNA molecules in vivo.  相似文献   

2.
3.
It was shown in the past that in the presence of histone H1, plasmidic polynucleosomes formed densely packed aggregates. Our current studies demonstrate that these aggregates are susceptible to the actions of E. coli topoisomerase I, human topoisomerase I and DNA nicking enzyme, which is the indication that negative supercoiling is present in the condensed DNA-protein complexes. Since negative supercoiling leads to formation of highly curved and compact plectonemic and toroidal DNA structures, it would be reasonable to assume that DNA negative supercoils are responsible for aggregation of histone H1-plasmidic polynucleosome complexes.  相似文献   

4.
HMG (high mobility group) 1 is a chromosomal protein with two homologous DNA-binding domains, the HMG boxes A and B. HMG-1, like its individual HMG boxes, can recognize structural distortion of DNA, such as four-way DNA junctions (4WJs), that are very likely to have features common to their natural, yet unknown, cellular binding targets. HMG-1 can also bend/loop DNA and introduce negative supercoils in the presence of topoisomerase I in topologically closed DNAs. Results of our gel shift assays demonstrate that mutation of Arg(97) within the extended N-terminal strand of the B domain significantly (>50-fold) decreases affinity of the HMG box for 4WJs and alters the mode of binding without changing the structural specificity for 4WJs. Several basic amino acids of the extended N-terminal strand (Lys(96)/Arg(97)) and helix I (Arg(110)/Lys(114)) of the B domain participate in DNA binding and supercoiling. The putative intercalating hydrophobic Phe(103) of helix I is important for DNA supercoiling but dispensable for binding to supercoiled DNA and 4WJs. We conclude that the B domain of HMG-1 can tolerate substitutions of a number of amino acid residues without abolishing the structure-specific recognition of 4WJs, whereas mutations of most of these residues severely impair the topoisomerase I-mediated DNA supercoiling and change the sign of supercoiling from negative to positive.  相似文献   

5.
Accumulating evidence suggests that human genome can fold into non-B DNA structures, when appropriate sequence and favourable conditions are present. Among these, G-quadruplexes (G4-DNA) are associated with gene regulation, chromosome fragility and telomere maintenance. Although several techniques are used in detecting such structures in vitro, understanding their intracellular existence has been challenging. Recently, an antibody, BG4, was described to study G4 structures within cells. Here, we characterize BG4 for its affinity towards G4-DNA, using several biochemical and biophysical tools. BG4 bound to G-rich DNA derived from multiple genes that form G-quadruplexes, unlike complementary C-rich or random sequences. BLI studies revealed robust binding affinity (Kd = 17.4 nM). Gel shift assays show BG4 binds to inter- and intramolecular G4-DNA, when it is in parallel orientation. Mere presence of G4-motif in duplex DNA is insufficient for antibody recognition. Importantly, BG4 can bind to G4-DNA within telomere sequence in a supercoiled plasmid. Finally, we show that BG4 binds to form efficient foci in four cell lines, irrespective of their lineage, demonstrating presence of G4-DNA in genome. Importantly, number of BG4 foci within the cells can be modulated, upon knockdown of G4-resolvase, WRN. Thus, we establish specificity of BG4 towards G4-DNA and discuss its potential applications.  相似文献   

6.
G-quadruplex (G4) DNA structures have emerged as important regulatory elements during DNA metabolic transactions. While many in vitro studies have focused on the kinetics of G4 formation within DNA single-strands, G4 are found in vivo in double-stranded DNA regions, where their formation is challenged by the complementary strand. Since the energy of hybridization of Watson-Crick structures dominates the energy of G4 folding, this competition should play a critical role on G4 persistence. To address this, we designed a single-molecule assay allowing to measure G4 folding and persistence times in the presence of the complementary strand. We quantified both folding and unfolding rates of biologically relevant G4 sequences, such as the cMYC and cKIT oncogene promoters, human telomeres and an avian replication origin. We confirmed that G4s are found much more stable in tested replication origin and promoters than in human telomere repeats. In addition, we characterized how G4 dynamics was affected by G4 ligands and showed that both folding rate and persistence time increased. Our assay opens new perspectives for the measurement of G4 dynamics in double-stranded DNA mimicking a replication fork, which is important to understand their role in DNA replication and gene regulation at a mechanistic level.  相似文献   

7.
Reverse gyrase is a unique hyperthermophile-specific DNA topoisomerase that induces positive supercoiling. It is a modular enzyme composed of a topoisomerase IA and a helicase domain, which cooperate in the ATP-dependent positive supercoiling reaction. Although its physiological function has not been determined, it can be hypothesized that, like the topoisomerase–helicase complexes found in every organism, reverse gyrase might participate in different DNA transactions mediated by multiprotein complexes. Here, we show that reverse gyrase activity is stimulated by the single-strand binding protein (SSB) from the archaeon Sulfolobus solfataricus. Using a combination of in vitro assays we analysed each step of the complex reverse gyrase reaction. SSB stimulates all the steps of the reaction: binding to DNA, DNA cleavage, strand passage and ligation. By co-immunoprecipitation of cell extracts we show that reverse gyrase and SSB assemble a complex in the presence of DNA, but do not make stable protein–protein interactions. In addition, SSB stimulates reverse gyrase positive supercoiling activity on DNA templates associated with the chromatin protein Sul7d. Furthermore, SSB enhances binding and cleavage of UV-irradiated substrates by reverse gyrase. The results shown here suggest that these functional interactions may have biological relevance and that the interplay of different DNA binding proteins might modulate reverse gyrase activity in DNA metabolic pathways.  相似文献   

8.
Reverse gyrase is an ATP-dependent topoisomerase that is unique to hyperthermophilic archaea and eubacteria. The only reverse gyrase structure determined to date has revealed the arrangement of the N-terminal helicase domain and the C-terminal topoisomerase domain that intimately cooperate to generate the unique function of positive DNA supercoiling. Although the structure has elicited hypotheses as to how supercoiling may be achieved, it lacks structural elements important for supercoiling and the molecular mechanism of positive supercoiling is still not clear. We present five structures of authentic Thermotoga maritima reverse gyrase that reveal a first view of two interacting zinc fingers that are crucial for positive DNA supercoiling. The so-called latch domain, which connects the helicase and the topoisomerase domains is required for their functional cooperation and presents a novel fold. Structural comparison defines mobile regions in parts of the helicase domain, including a helical insert and the latch that are likely important for DNA binding during catalysis. We show that the latch, the helical insert and the zinc fingers contribute to the binding of DNA to reverse gyrase and are uniquely placed within the reverse gyrase structure to bind and guide DNA during strand passage. A possible mechanism for positive supercoiling by reverse gyrases is presented.  相似文献   

9.
DNA topology plays a crucial role in all living cells. In prokaryotes, negative supercoiling is required to initiate replication and either negative or positive supercoiling assists decatenation. The role of DNA knots, however, remains a mystery. Knots are very harmful for cells if not removed efficiently, but DNA molecules become knotted in vivo. If knots are deleterious, why then does DNA become knotted? Here, we used classical genetics, high-resolution 2D agarose gel electrophoresis and atomic force microscopy to show that topoisomerase IV (Topo IV), one of the two type-II DNA topoisomerases in bacteria, is responsible for the knotting and unknotting of sister duplexes during DNA replication. We propose that when progression of the replication forks is impaired, sister duplexes become loosely intertwined. Under these conditions, Topo IV inadvertently makes the strand passages that lead to the formation of knots and removes them later on to allow their correct segregation.  相似文献   

10.
As only the type II topoisomerase is capable of introducing negative supercoiling, DNA gyrase is involved in crucial cellular processes. Although the other domains of DNA gyrase are better understood, the mechanism of DNA binding by the C-terminal domain of the DNA gyrase A subunit (GyrA-CTD) is less clear. Here, we investigated the DNA-binding sites in the GyrA-CTD of Mycobacterium tuberculosis gyrase through site-directed mutagenesis. The results show that Y577, R691 and R745 are among the key DNA-binding residues in M.tuberculosis GyrA-CTD, and that the third blade of the GyrA-CTD is the main DNA-binding region in M.tuberculosis DNA gyrase. The substitutions of Y577A, D669A, R691A, R745A and G729W led to the loss of supercoiling and relaxation activities, although they had a little effect on the drug-dependent DNA cleavage and decatenation activities, and had no effect on the ATPase activity. Taken together, these results showed that the GyrA-CTD is essential to DNA gyrase of M.tuberculosis, and promote the idea that the M.tuberculosis GyrA-CTD is a new potential target for drug design. It is the first time that the DNA-binding sites in GyrA-CTD have been identified.  相似文献   

11.
A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4P) index we analysed >60 000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4P. Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4P of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ∼60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions.  相似文献   

12.
The metabolism of DNA in cells relies on the balance between hybridized double-stranded DNA (dsDNA) and local de-hybridized regions of ssDNA that provide access to binding proteins. Traditional melting experiments, in which short pieces of dsDNA are heated up until the point of melting into ssDNA, have determined that AT-rich sequences have a lower binding energy than GC-rich sequences. In cells, however, the double-stranded backbone of DNA is destabilized by negative supercoiling, and not by temperature. To investigate what the effect of GC content is on DNA melting induced by negative supercoiling, we studied DNA molecules with a GC content ranging from 38% to 77%, using single-molecule magnetic tweezer measurements in which the length of a single DNA molecule is measured as a function of applied stretching force and supercoiling density. At low force (<0.5pN), supercoiling results into twisting of the dsDNA backbone and loop formation (plectonemes), without inducing any DNA melting. This process was not influenced by the DNA sequence. When negative supercoiling is introduced at increasing force, local melting of DNA is introduced. We measured for the different DNA molecules a characteristic force F char, at which negative supercoiling induces local melting of the dsDNA. Surprisingly, GC-rich sequences melt at lower forces than AT-rich sequences: F char = 0.56pN for 77% GC but 0.73pN for 38% GC. An explanation for this counterintuitive effect is provided by the realization that supercoiling densities of a few percent only induce melting of a few percent of the base pairs. As a consequence, denaturation bubbles occur in local AT-rich regions and the sequence-dependent effect arises from an increased DNA bending/torsional energy associated with the plectonemes. This new insight indicates that an increased GC-content adjacent to AT-rich DNA regions will enhance local opening of the double-stranded DNA helix.  相似文献   

13.
14.
The formation of melted regions from A + T-rich sequences and left-handed Z-DNA by alternating purine-pyrimidine sequences will both be facilitated by negative supercoiling, and thus if the sequences are present within the same plasmid molecule they will compete for the free energy of supercoiling. We have studied a series of plasmids that contain either (CG)8 or (TG)12 sequences in either G + C or A + T-rich contexts, by means of two-dimensional gel electrophoresis and chemical modification. We observe both B-Z and helix-coil transitions in all plasmids at elevated temperatures and low ionic strength. The plasmids fall into a number of different classes, in terms of the conformational behavior. As the superhelix density is increased, pCG8/vec ((CG)8 in G + C-rich context) undergoes an initial B-Z transition, followed by melting transitions in sequences remote from the (CG)8 sequence. The two transitions are coupled through the topology of the molecule but are otherwise independent. When the (CG)8 sequence was placed in an A + T-rich context (pCG8/col), the helix-coil transition was perturbed by the presence of the Z-DNA segment. Replacement of the (CG)8 tracts by (TG)12 sequences resulted in a further level of interaction between the transitions. Statistical mechanical modeling of the transitions suggested that at intermediate levels of negative supercoiling the Z-DNA formed by the (TG)12 sequence has a lowered probability due to the helix-coil transition in the A + T-rich sequences. These studies illustrate the complexities of competing conformational equilibria in supercoiled DNA molecules.  相似文献   

15.
16.
17.
DNA in bacterial chromosomes and bacterial plasmids is supercoiled. DNA supercoiling is essential for DNA replication and gene regulation. However, the density of supercoiling in vivo is circa twice smaller than in deproteinized DNA molecules isolated from bacteria. What are then the specific advantages of reduced supercoiling density that is maintained in vivo? Using Brownian dynamics simulations and atomic force microscopy we show here that thanks to physiological DNA–DNA crowding DNA molecules with reduced supercoiling density are still sufficiently supercoiled to stimulate interaction between cis-regulatory elements. On the other hand, weak supercoiling permits DNA molecules to modulate their overall shape in response to physiological changes in DNA crowding. This plasticity of DNA shapes may have regulatory role and be important for the postreplicative spontaneous segregation of bacterial chromosomes.  相似文献   

18.
19.
It was found recently that bacterial type II DNA topoisomerase, topo IV, is much more efficient in relaxing (+) DNA supercoiling than (-) supercoiling. This means that the DNA-enzyme complex is chiral. This chirality can appear upon binding the first segment that participates in the strand passing reaction (G segment) or only after the second segment (T segment) joins the complex. The former possibility is analyzed here. We assume that upon binding the enzyme, the G segment forms a part of left-handed helical turn. This model is an extension of the hairpin model introduced earlier to explain simplification of DNA topology by these enzymes. Using statistical-mechanical simulation of DNA properties, we estimated different consequences of the model: (1) relative rates of relaxation of (+) and (-) supercoiling by the enzyme; (2) the distribution of positions of the G segment in supercoiled molecules; (3) steady-state distribution of knots in circular molecules created by the topoisomerase; (4) the variance of topoisomer distribution created by the enzyme; (5) the effect of (+) and (-) supercoiling on the binding topo II with G segment. The simulation results are capable of explaining nearly all available experimental data, at least semiquantitatively. A few predictions obtained in the model analysis can be tested experimentally.  相似文献   

20.
G-quadruplexes (G4s) are non-B DNA structures present in guanine-rich regions of gene regulatory areas, promoters and CpG islands, but their occurrence and functions remain incompletely understood. Thus, methodology to identify G4 sequences is needed. Here, we describe the synthesis of a novel cyclic hepta-oxazole compound, L1Bio-7OTD (1), bearing a biotin affinity-tag as a tool to pull down G4 structures from mixtures of G4-forming and non G4-forming DNA sequences. We confirmed that it could pull down G4s associated with telomeres, bcl-2 gene, and c-kit gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号