首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dinophysis is a cosmopolitan genus of marine dinoflagellates, considered as the major proximal source of diarrheic shellfish toxins and the only producer of pectenotoxins (PTX). From three oceanographic expeditions carried out during autumn, spring and late summer along the Argentine Sea (∼38–56°S), lipophilic phycotoxins were determined by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) in size-fractionated plankton samples. Lipophilic toxin profiles were associated with species composition by microscopic analyses of toxigenic phytoplankton. Pectenotoxin-2 and PTX-11 were frequently found together with the presence of Dinophysis acuminata and Dinophysis tripos. By contrast, okadaic acid was rarely detected and only in trace concentrations, and dinophysistoxins were not found. The clear predominance of PTX over other lipophilic toxins in Dinophysis species from the Argentine Sea is in accordance with previous results obtained from north Patagonian Gulfs of the Argentine Sea, and from coastal waters of New Zealand, Chile, Denmark and United States. Dinophysis caudata was rarely found and it was confined to the north of the sampling area. Because of low cell densities, neither D. caudata nor Dinophysis norvegica could be biogeographically related to lipophilic toxins in this study. Nevertheless, the current identification of D. norvegica in the southern Argentine Sea is the first record for the southwestern Atlantic Ocean. Given the typical toxigenicity of this species on a global scale, this represents an important finding for future surveillance of plankton-toxin associations.  相似文献   

2.
The production of diarrhetic shellfish poisoning toxins (okadaic acid analogues and other lipophilic toxins) by a culture of Dinophysis acuminata, fed with the autotrophic ciliate Myrionecta rubra, was confirmed by LC–MS analysis, and the toxin profile compared with that in the field assemblage of the same species. The growth response of D. acuminata to the density of the food organism was also examined in laboratory experiments. In semi-continuous culture experiments, the growth rates of D. acuminata increased with increasing density of M. rubra and a maximum growth rate of 0.67 per day was calculated. In batch culture experiments; the cellular content of PTX2 and DTX1 were 14.7–14.8 and 2.5–4.8 pg cell?1, respectively. Okadaic acid, dinophysistoxin-3, pectenotoxin-1, pectenotoxin-6, yessotoxin (YTX) and 45-OHYTX were not detected. PTX2 was detected (cellular toxin content: 22 pg cell?1), but DTX1 was not detected, in an extract of D. acuminata collected from natural seawater at the same location where the cultured D. acuminata specimens were isolated. These results strongly suggest that D. acuminata produces these toxins during cell growth and that environmental factors influence variations in the toxin composition and specific cellular toxicity.  相似文献   

3.
Quantification of diarrhetic shellfish poisoning (DSP) toxins (okadaic acid analogues), and other lipophilic toxins in single-cell isolates of the dinoflagellates Dinophysis fortii, D. acuminata, D. mitra, D. norvegica, D. tripos, D. infundibulus and D. rotundata, collected in coastal waters Hokkaido, Japan in 2005, was carried out by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Okadaic acid (OA), dinophysistoxin-1 (DTX1), 7-O-palmitoyldinophysistoxin-1 (DTX3), pectenotoxin-1 (PTX1), pectenotoxin-11 (PTX11), pectenotoxin-2 (PTX2), pectenotoxin-6 (PTX6), pectenotoxin-2 seco-acid (PTX2sa), yessotoxin (YTX) and 45-hydroxyyessotoxin (45-OHYTX) were quantified by LC–MS/MS. PTX2 was the dominant toxin in D. acuminata, D. norvegica and D. infundibulus whereas both DTX1 and PTX2 were the principal toxins in D. fortii. None of the toxins were detected in D. mitra, D. rotundata and D. tripos. These results suggest that D. fortii is the most important species responsible for DSP contamination of bivalves in Hokkaido. This is the first finding of PTX2 in D. infundibulus, and confirms the presence of PTX2 in Japanese D. acuminata and D. norvegica collected from natural seawater.  相似文献   

4.
Azaspiracids (AZAs) are a group of lipophilic polyether toxins implicated in incidents of shellfish poisoning in humans, particularly in northern Europe. In an attempt to establish the biogeographical distribution of AZA toxins, their association with plankton size-fractions, and to confirm the identity of the causative species responsible for human poisoning, a month-long oceanographic study was undertaken in coastal North Sea waters. The occurrence and abundance of AZA analogues was measured by on board triple quadrupole mass spectrometry coupled to liquid chromatography (LC-MS/MS). In size-fractionated plankton samples collected by net tows (20 μm mesh-size), by pumping from discrete depths and from Niskin entrapment bottle casts to fixed depths, AZA-1 was consistently the major azaspiracid component. In eastern Scottish coastal waters, the highest amounts of AZA-1 in net tow samples were in the 50–200 μm fractions, with lesser amounts detected in the >200 μm and 50–20 μm fractions. At these stations, the 50–200 μm fractions were rich in the ciliate Favella ehrenbergii. Cells of F. ehrenbergii isolated by microcapillary indeed contained AZA-1, but isolated cells grown and fed the non-toxic dinoflagellate Scrippsiella trochoidea for one week failed to contain any detectable AZA-1—evidence that F. ehrenbergii is merely a vector for AZA. Detailed analysis of plankton from Niskin bottle samples from around the North Sea typically showed highest amounts of AZA in the 3–20 μm fraction. From this fraction, a large number of crude cultures were established and subsequently screened for the presence of AZAs. A small photosynthetic thecate dinoflagellate, provisionally designated as strain 3D9, was isolated by microcapillary and brought into pure culture. This dinoflagellate strain was found to produce AZA-1, AZA-2 and an isomer of AZA-2. Sequence comparisons by molecular genetic techniques also indicated that this genotype was present in field samples rich in AZA. This discovery of a novel causative dinoflagellate for AZA toxicity essentially explains the lack of correlation of AZA with the abundance and distribution of the previously postulated culprit species Protoperidinium crassipes. We instead propose that such large phagotrophic dinoflagellates can act as an AZA vector following grazing upon a proximal source, such as the dinoflagellate 3D9 strain.  相似文献   

5.
Never before observed or cited in Dinophysis studies, deformations in Dinophysis acuminata and Dinophysis sacculus are reported throughout their cellular division phases (cytokinesis, and sulcal list regeneration) in 5 in situ cell cycle studies in the Punic harbors of Carthage (northern Tunisia). Two types of deformation were observed: invaginations in the ventral and dorsal margin and protuberances at the base of the left sulcal list. No virus or bacteria were detected with Syber green stain. In situ division rates (μ) varied among seasons and stations for the same species. D. acuminata exhibited moderate (0.22 day−1) to high (0.68 day−1) μ rates which were however very low (0.02–0.17 day−1) for D. sacculus in autumn and moderate (0.21–0.35 day−1) in late spring. In 2009 the seasonal distribution of Dinophysis indicates maximum Dinophysis cf. ovum abundance in March and a high number of D. acuminata in early June, while in 2010 maximum abundance of the same species was found in mid-June.Molecular and genetic studies and staining with specific fluorescent strains should be addressed to hopefully explain these Dinophysis cell deformations during their in situ division.  相似文献   

6.
Fjordic coastlines provide an ideal protected environment for both finfish and shellfish aquaculture operations. This study reports the results of a cruise to the Scottish Clyde Sea, and associated fjordic sea lochs, that coincided with blooms of the diarrhetic shellfish toxin producing dinoflagellate Dinophysis acuta and the diatom genus Chaetoceros, that can generate finfish mortalities. Unusually, D. acuta reached one order of magnitude higher cell abundance in the water column (2840 cells L−1) than the more common Dinophysis acuminata (200 cells L−1) and was linked with elevated shellfish toxicity (maximum 601 ± 237 μg OA eq/kg shellfish flesh) which caused shellfish harvesting closures in the region. Significant correlations between D. acuta abundance and that of Mesodinium rubrum were also observed across the cruise transect potentially supporting bloom formation of the mixotrophic D. acuta. Significant spatial variability in phytoplankton that was related to physical characteristics of the water column was observed, with a temperature-driven frontal region at the mouth of Loch Fyne being important in the development of the D. acuta, but not the Chaetoceros bloom. The front also provided important protection to the aquaculture located within the loch, with neither of the blooms encroaching within it. Analysis based on a particle-tracking model confirms the importance of the front to cell transport and shows significant inter-annual differences in advection within the region, that are important to the harmful algal bloom risk therein.  相似文献   

7.
扇贝毒素pectenotoxins(PTXs)研究进展   总被引:2,自引:0,他引:2  
刘仁沿  梁玉波 《生态学报》2010,30(19):5355-5370
扇贝毒素(pectenotoxins,PTXs)是一类聚醚大环内酯结构的脂溶性海洋生物毒素,是由海洋甲藻中的鳍藻属Dinophysisspp.的几个种产生的,1984年首次从日本的养殖扇贝Patinopecten yessoensis中发现鉴定,具有很高的小鼠腹腔注射致死毒性。近年发现的地理区域不断扩大,我国尚属空白。就这一毒素的结构、来源生物、毒性、携带生物、地理分布、降解代谢及风险评估等研究现状作一系统综述,并分析展望了今后我国藻毒素研究的重点方向。  相似文献   

8.
The variability of toxigenic phytoplankton and the consequent uptake and loss of toxins by the mussel Choromytilus meridionalis was investigated in the southern Benguela at the event scale (3–10 days) in response to the upwelling–downwelling cycle. Phytoplankton and mussel samples were collected daily (20 March–11 April 2007) from a mooring station (32.04°S; 18.26°E) located 3.5 km offshore of Lambert's Bay, within the St Helena Bay region. Rapid changes in phytoplankton assemblages incorporated three groups of toxigenic phytoplankton: (1) the dinoflagellate Alexandrium catenella; (2) several species of Dinophysis, including Dinophysis acuminata, Dinophysis fortii, Dinophysis hastata and Dinophysis rotundata; and (3) members of the diatom genus Pseudo-nitzschia. Analysis of phytoplankton concentrates by LC–MS/MS or LC-FD provided information on the toxin composition and calculated toxicity of each group. Several additional in vitro assays were used for the analysis of toxins in mussels (ELISA, RBA, MBA for PSP toxins; and ELISA for DSP toxins). Good correspondence was observed between methods except for the MBA, which provided significantly lower (approximately 2-fold) estimates of PSP toxins. PSP and DSP toxins both exceeded the regulatory limits in Choromytilis meridionalis, but ASP toxins were undetected. Differences were observed in the composition of both PSP and DSP toxins in C. meridionalis from that of the ingested dinoflagellates (PSP toxins showed an increase in STX, C1,2, and traces of dcSTX and GTX1,4 and a decrease in NEO; DSP toxins showed an increased in DTX1, and traces of PTX2sa, and a decrease in OA). The rate of loss of PSP toxins following dispersal of the A. catenella boom was 0.12 d−1. Variation in the loss rates of different PSP toxins contributed to the change in toxin profile in C. meridionalis. Prediction of net toxicity in shellfish of the nearshore environment in the southern Benguela is limited due to rapid phytoplankton community changes, high variability in cellular toxicity, and the selective uptake and loss of toxins, and/or transformation of toxins.  相似文献   

9.
Toxigenic Dinophysis spp. are obligate mixotrophic dinoflagellates that require a constant supply of prey—Mesodinium rubrum—to achieve long-term growth by means of kleptoplasty. Mesodinium rubrum is, however, a fast moving, jumping ciliate exhibiting an effective escape response from suspensivorous predators. In the present study, a series of laboratory experiments evaluating the motility and survival of M. rubrum in the presence of Dinophysis cells and/or substances contained in their culture medium was designed, in order to assess the mechanisms involved in prey capture by Dinophysis spp. Cell abundance of M. rubrum decreased in the presence of Dinophysis cf. ovum cells producing okadaic acid (OA; up to 7.94 ± 2.67 pg cell−1) and smaller amounts of dinophysistoxin-1 (DTX-1) and pectenotoxin-2 (PTX-2). Prey capture was often observed after the ciliate had been attached to adhesive “mucus traps”, which only appeared in the presence of Dinophysis cells. Before being attached to the mucus traps, M. rubrum cells reduced significantly their swimming frequency (from ∼41 to 19 ± 3 jumps min−1) after only 4 h of initial contact with D. cf. ovum cells. M. rubrum survival was not affected in contact with purified OA, DTX-1 and PTX-2 solutions, but decreased significantly when the ciliate was exposed to cell-free or filtered culture medium from both D. cf. ovum and D. caudata, the latter containing moderate concentrations of free eicosapentaenoic acid and docosahexaenoic acid. The results thus indicate that Dinophysis combines the release of toxic compounds other than shellfish toxins, possibly free PUFAs, and a “mucus trap” to enhance its prey capture success by immobilizing and subsequently arresting M. rubrum cells.  相似文献   

10.
Plankton surveys, between 2001 and 2005 along the Russian Caucasian Black Sea Coast, revealed Dinophysis rotundata, D. caudata and Prorocentrum lima as the most ubiquitous of the known dinoflagellates associated with diarrhetic shellfish poisoning (DSP). Dinophysis spp. were first observed during the spring phytoplankton succession and persist throughout the late summer phytoplankton peak. The highest total concentration, 3000 cells/L, of D. rotundata and D. caudata was observed in April 2001. Unlike Dinophysis, P. lima was rarely observed in plankton samples but closely followed storm events with maximum cell counts of P. lima occurred in July 2002.The presence of Dinophysis in mussel (Mytilus galloprovincialis) hepatopancreas correlated with concentration with Dinophysis observed in the plankton samples. Conversely, P. lima could be found in most hepatopancreas samples collected during the May to October period. Therefore, planktonic concentration of P. lima does not reflect its availability for and consumption by shellfish.Samples of mussel hepatopancreas, from August 2002, with a corresponding Dinophysis concentration of 250 cells/L and no observable P. lima, were found to contain 0.03 ng OAE/g. This sample analyses by LC-MS/MS displayed okadaic acid (OA) and related congeners (DTX1) along with the pectinotoxins (PTX2 and PTX2sa). Highest observed levels of P. lima-induced DSP-toxicity in hepatopancreas was 0.41 g OA-equivalents/g corresponded to the highest observed planktonic cell counts of P. lima, 300 cell/L in August 2001. Cultures isolated from this sample were found to produce OA, DTX1 and their related diol esters.These data reveal a threat, represented by DSP-toxic species, at Black Sea coasts, and provide grounds for the introduction of phycotoxin control measures in the region.  相似文献   

11.
Over the past few decades, there has been an increased frequency and duration of cyanobacterial Harmful Algal Blooms (HABs) in freshwater systems globally. These can produce secondary metabolites called cyanotoxins, many of which are hepatotoxins, raising concerns about repeated exposure through ingestion of contaminated drinking water or food or through recreational activities such as bathing/swimming. An ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) multi-toxin method has been developed and validated for freshwater cyanotoxins; microcystins-LR, -YR, -RR, -LA, -LY and -LF, nodularin, cylindrospermopsin, anatoxin-a and the marine diatom toxin domoic acid. Separation was achieved in around 9 min and dual SPE was incorporated providing detection limits of between 0.3 and 5.6 ng/L of original sample. Intra- and inter-day precision analysis showed relative standard deviations (RSD) of 1.2–9.6% and 1.3–12.0% respectively. The method was applied to the analysis of aquatic samples (n = 206) from six European countries. The main class detected were the hepatotoxins; microcystin-YR (n = 22), cylindrospermopsin (n = 25), microcystin-RR (n = 17), microcystin-LR (n = 12), microcystin-LY (n = 1), microcystin-LF (n = 1) and nodularin (n = 5). For microcystins, the levels detected ranged from 0.001 to 1.51 μg/L, with two samples showing combined levels above the guideline set by the WHO of 1 μg/L for microcystin-LR. Several samples presented with multiple toxins indicating the potential for synergistic effects and possibly enhanced toxicity. This is the first published pan European survey of freshwater bodies for multiple biotoxins, including two identified for the first time; cylindrospermopsin in Ireland and nodularin in Germany, presenting further incentives for improved monitoring and development of strategies to mitigate human exposure.  相似文献   

12.
The dynamics of Dinophysis acuminata and its associated diarrhetic shellfish poisoning (DSP) toxins, okadaic acid (OA) and dinophysistoxin-1 (DTX1) as well as pectenotoxins (PTXs), were investigated within plankton and shellfish in Northport Bay, NY, USA, over a four year period (2008–2011). Over the course of the study, Dinophysis bloom densities ranged from ~104 to 106 cells L−1 and exceeded 106 L−1 in 2011 when levels of total OA, total DTX1, and PTX in the water column were 188, 86, and 2900 pg mL−1, respectively, with the majority of the DSP toxins present as esters. These cell densities exceed – by two orders of magnitude – those previously reported within thousands of samples collected from NY waters from 1971 to 1986. The bloom species was positively identified as D. acuminata via scanning electron microscopy and genetic sequencing (cox1 gene). The cox1 gene sequence from the D. acuminata populations in Northport Bay was 100% identical to D. acuminata from Narragansett Bay, RI, USA and formed a strongly supported phylogenetic cluster (posterior probability = 1) that included D. acuminata and Dinophysis ovum from systems along the North Atlantic Ocean. Shellfish collected from Northport Bay during the 2011 bloom had DSP toxin levels (1245 ng g−1 total OA congeners) far exceeding the USFDA action level (160 ng g−1 total OA of shellfish tissue) representing the first such occurrence on the East Coast of the U.S. D. acuminata blooms co-occurred with paralytic shellfish poisoning (PSP) causing blooms of Alexandrium fundyense during late spring each year of the study. D. acuminata cell abundances were significantly correlated with levels of total phytoplankton biomass and Mesodinium spp., suggesting food web interactions may influence the dynamics of these blooms. Given that little is known regarding the combined effects of DSP and PSP toxins on human health and the concurrent accumulation and depuration of these toxins in shellfish, these blooms represent a novel managerial challenge.  相似文献   

13.
A rapid high-performance liquid chromatography–mass spectrometry (HPLC–MS) method was developed and validated for simultaneous quantification of 6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol in rat plasma after oral administration of ginger oleoresin. Plasma samples extracted with a liquid–liquid extraction procedure were separated on an Agilent Zorbax StableBond-C18 column (4.6 mm × 50 mm, 1.8 μm) and detected by MS with electrospray ionization interface in positive selective ion monitoring (SIM) mode. Calibration curves (1/x2 weighted) offered satisfactory linearity (r2 > 0.995) in a wide linear range (0.0104–13.0 μg/mL for 6-gingerol, 0.00357–4.46 μg/mL for 8-gingerol, 0.00920–11.5 μg/mL for 10-gingerol and 0.00738–9.22 μg/mL for 6-shogaol). The lower limit of quantification (LLOQ) was in a range of 3.57–10.4 ng/mL. The analytes and internal standard can be baseline separated within 6 min. Inter- and intra-day assay variation was less than 15%. This developed method was successfully applied to pharmacokinetic studies of ginger oleoresin after oral administration to rats. Glucuronide of 6-gingerol was determined after β-glucuronidase hydrolysis for more information, and the intestinal glucuronidation was further confirmed by comparison of plasma samples of hepatic portal vein and femoral vein.  相似文献   

14.
A series of twenty eight molecules of ethyl 5-(piperazin-1-yl)benzofuran-2-carboxylate and 3-(piperazin-1-yl)benzo[d]isothiazole were designed by molecular hybridization of thiazole aminopiperidine core and carbamide side chain in eight steps and were screened for their in vitro Mycobacterium smegmatis (MS) GyrB ATPase assay, Mycobacterium tuberculosis (MTB) DNA gyrase super coiling assay, antitubercular activity, cytotoxicity and protein–inhibitor interaction assay through differential scanning fluorimetry. Also the orientation and the ligand–protein interactions of the top hit molecules with MS DNA gyrase B subunit active site were investigated applying extra precision mode (XP) of Glide. Among the compounds studied, 4-(benzo[d]isothiazol-3-yl)-N-(4-chlorophenyl)piperazine-1-carboxamide (26) was found to be the most promising inhibitor with an MS GyrB IC50 of 1.77 ± 0.23 μM, 0.42 ± 0.23 against MTB DNA gyrase, MTB MIC of 3.64 μM, and was not cytotoxic in eukaryotic cells at 100 μM. Moreover the interaction of protein–ligand complex was stable and showed a positive shift of 3.5 °C in differential scanning fluorimetric evaluations.  相似文献   

15.
BackgroundSelenium is important for human health and involved in various metabolic processes. Deficiency of selenium associates with increased risk for cancer and cardiovascular diseases. There has been an increase use of selenium supplements for the treatment of autoimmune thyroid conditions. However, the potential biological effects of selenium overload arouse the public concern. The aim of this study was to investigate the associations of plasma selenium concentrations of adults with metabolic syndrome (MS) in Chinese population.MethodsA matched case-control study including 204 metabolic syndrome patients and 204 healthy controls was conducted in 2012. The MS cases were defined according to the criteria of Chinese Diabetes Society (CDS). Healthy controls without abnormality of metabolic components were matched with cases in age, gender and region. Plasma concentrations of selenium were determined by graphite furnace atomic absorption spectrometry (GFAAS). Fasting plasma glucose (FPG), total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL), and low density lipoprotein cholesterol (LDL) were detected by automatic biochemical analyzer.ResultsThe median levels of plasma selenium in MS group were 146.3 (107.3–199.4) μg/L, which were significantly higher than that in the control group (127.4: 95.7–176.0) μg/L; Plasma levels of selenium were related to the risk of MS in dose-response manner. Risk of MS was significantly higher in subjects with plasma selenium in the highest tertile (T3: ≥176.0 μg/L) compared to those in the lowest tertile (T1: <95.7 μg/L) [odds ratio (OR) = 2.416 (95% CI: 1.289–4.526)]. The plasma levels of selenium were positively correlated with fasting plasma glucose (FPG) (rs = 0.268, P < 0.001). Plasma selenium at the median (T2: 95.7–176.0 μg/L) or upper tertile (T3: ≥176.0 μg/L) was associated with increased risk of elevated FPG (defined by FPG  6.1 mmol/L) as compared with the lowest tertile (T1: ≤95.7 μg/L) [T2 vs. T1, OR = 3.487 (1.738–6.996); T3 vs. T1, OR = 6.245 (3.005–12.981)].ConclusionsHigher levels of plasma selenium might increase the risk of metabolic syndrome and elevated fasting plasma glucose. Selenium supplements should be used with prudence for CVD and cancer prevention.  相似文献   

16.
Drug–drug interactions involving cytochrome P450 (CYP450s) are an important factor for evaluation of a new chemical entity (NCE) in drug development. To evaluate the potential inhibitory effects of a NCE on the pharmacokinetics of a cocktail of representative probes of CYP enzymes (midazolam for CYP3A4, tolbutamide for CYP2C9, omeprazole for CYP2C19 and dextromethorphan for CYP2D6) and the safety and tolerability of the NCE in the presence of probe substrates, a high throughput liquid chromatography/tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of tolbutamide, omeprazole, midazolam and dextromethorphan in human plasma using tolbutamide-d9, midazolam-d4, (±)-omeprazole-d3, and dextromethorphan-d3 as the internal standards (ISs). Human plasma samples of 50 μL were extracted by a simple protein-precipitation procedure and analyzed using a high performance liquid chromatography electrospray tandem mass spectrometer system. Reversed-phase HPLC separation was achieved with a Hypersil GOLD AQ column (50 mm × 4.6 mm, 5 μm). MS/MS detection was set at mass transitions of 271  172 m/z for tolbutamide, 346  198 m/z for omeprazole, 326  291 m/z for midazolam, 272  171 m/z for dextromethorphan, 280  172 m/z for tolbutamide-d9 (IS), 349  198 m/z for (±)-omeprazole-d3 (IS), 330  295 m/z for midazolam-d4 (IS), and 275  171 m/z for dextromethorphan-d3 (IS) in positive mode. The high throughput LC–MS/MS method was validated for accuracy, precision, sensitivity, stability, recovery, matrix effects, and calibration range. Acceptable intra-run and inter-run assay precision (<10%) and accuracy (<10%) were achieved over a linear range of 50–50,000 ng/mL for tolbutamide, 1–1000 ng/mL for omeprazole, 0.1–100 ng/mL for midazolam and 0.05–50 ng/mL for dextromethorphan in human plasma. Method robustness was demonstrated by the 100% pass rate of 24 incurred sample analysis runs and all of the 50 clinical study samples used for incurred sample reproducibility (ISR) test having met the acceptance criterion (%Diff within 20%). The overall ISR results for all compounds showed that over 95% of the samples had a %Diff of less than 10%. The method is simple, rapid and rugged, and has been applied successfully to sample analysis in support of a drug–drug interaction study.  相似文献   

17.
HPLC–MS/MS methods for the determination of a Hepatitis C NS3/NS4 protease inhibitor (MK-7009) in human plasma and Tween-treated urine were developed and validated over the concentration range 1–1000 ng/mL and 0.2–100 μg/mL respectively. A stable isotope labeled internal standard (ISTD), D4-MK-7009, was employed. Analytes were chromatographed by reversed phase HPLC and quantified by an MS/MS system. Electrospray ionization in the positive mode was employed. Multiple reaction monitoring of the precursor to product ion pairs m/z 758.6  637.4 MK-7009 and m/z 762.5  637.4 ISTD was used for quantitation. Analyte and internal standard were extracted from 250 μL of plasma using an automated 96-well liquid–liquid extraction. Plasma pH adjustment prior to extraction minimized ionization suppression in plasma samples from patients with Hepatitis C. The urine method involved direct dilution in the 96-well format of 0.020 mL Tween-treated urine. These methods have supported several clinical studies. Incurred plasma sample reanalysis demonstrated adequate assay reproducibility and ruggedness.  相似文献   

18.
The main aim of presented study was the comparison of various extraction methods for the quantitative and qualitative analysis (LC-ESI–MS/MS) of phenolic acids present in extracts obtained from leaves, flowers, and roots of Impatiens glandulifera. The accelerated solvent extraction (ASE) at three temperature ranges (80° C, 100° C, and 120° C), ultrasound assisted extraction (USAE) at 60° C, and traditional extraction in Soxhlet apparatus were used. Taking into account the extraction yield, and the diversity of the individual compounds, ultrasound assisted extraction proved to be the most efficient method, and it was used to determine the content of phenolic acids in leaves of four other Impatiens species, including I. balsamina, I. noli-tangere, I. parviflora, and I. walleriana. Eleven phenolic acids were identified in all examined species. These were protocatechuic, gentisic, 4- hydroxybenzoic, vanillic, trans-caffeic, syringic, trans-p-coumaric, trans- and cis-ferulic, salicylic, and 3-hydroxycinnamic acids. In the extract from the leaves of I. balsamina and I. walleriana, gallic and cis-p-coumaric acids were found additionally. The most abundant compounds in all examined extracts were protocatechuic and 3-hydroxycinnamic acids. The latest acid was found in the highest yield in I. noli-tangere (266.12 μg/g DW). In the leaves of I. glandulifera a great amount of 4-hydroxybenzoic (41.44 μg/g DW), vanillic (61.50 μg/g DW), and trans-p-coumaric (58.42 μg/g DW) acids was also observed. Our results indicate that protocatechuic, 4-hydroxybenzoic, vanillic, trans-p-coumaric, trans-ferulic, and 3-hydroxycinnamic acids were most characteristic of Impatiens species.Additionally, various phenolic-rich extracts from leaves, flowers, and roots of Impatiens glandulifera were tested for antioxidant activity. The highest antiradical activity was detected for roots using Soxhlet extraction (EC50 = 0.055 mg [DE/ml]).The study demonstrated that members of the genus Impatiens, and in particular Impatiens glandulifera, and Impatiens noli-tangere, contain significant amounts of phenolic acids. In addition, extracts from various parts of I. glandulifera could be interesting as novel sources of natural antioxidants.  相似文献   

19.
Two new rotenoids, named millettiaosas A–B (12), together with four known compounds were isolated from the roots of Millettia speciosa. Their structures were elucidated on the basis of spectroscopic analysis including 1D and 2D NMR techniques and HRESIMS. Evaluation of the two new compounds for cytotoxicity against four human cancer cell lines (MCF-7, HCT-116, A549 and HepG-2) showed moderate activities (10 μM < IC50 < 26 μM).  相似文献   

20.
Bioassay guided fractionation of the roots of Lantana montevidensis (Verbenaceae) has resulted in the isolation and identification of three new triterpenoids; 13β-hydroxy-3-oxo-olean-11-en-28-oic acid (1), 12β,13β-dihydroxyolean-3-oxo-28-oic acid (2) and 12β,13β,22β-trihydroxyolean-3-oxo-28-oic acid (3) in addition to nine known compounds: oleanonic acid (4), oleanolic acid (5), 3β,25β-dihydroxy-olean-12-en-28-oic acid (6), lantadene A (7), 19α-hydroxy-3-oxo-olean-12-en-28-oic acid (8) pomolic acid (9), camaric acid (10) together with β-sitosterol (11) and β-sitosterol-3-O-β-d-glucoside (12). The structures of the isolated metabolites were elucidated based on comprehensive 1D and 2D NMR spectroscopic data as well as HR-ESI–MS. The extracts and the isolated metabolites were evaluated for their antiprotozoal and antimicrobial activities. Compound 2 showed antibacterial activity against Staphylococcus aureus and methicillin resistant S. aureus with IC50 values against both organisms of 2.1 μM and compound 10 showed activity against same organisms with IC50 values 8.74 and 8.09 μM, respectively, compared to the positive control ciprofloxacin (IC50 = 0.3 μM against S. aureus and MRSA). Compounds 1, 4, 5, 6, and 10 showed moderate antileishmanial activity with IC50 values ranging between (2.54–14.95 μM) and IC90 values ranging between (11.90–19.47 μM), using pentamidine as a control (IC50 values 2.09  16.8 μM) and IC90 values ranging between (4.72  16.8 μM). These compounds also showed highly potent antitrypanosomal activity with IC50 values ranging between (0.39–7.12 μM) and IC90 values ranging between (1.91–10.51 μM), which are more efficient than the DFMO, the antitrypanosomal drug employed as positive control (IC50 and IC90values 11.82 and 30.82 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号