首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of the basement membrane heparan sulfate proteoglycan (HSPG), perlecan (Pln), mRNA, and protein has been examined during murine development. Both Pln mRNA and protein are highly expressed in cartilaginous regions of developing mouse embryos, but not in areas of membranous bone formation. Initially detected at low levels in precartilaginous areas of d 12.5 embryos, Pln protein accumulates in these regions through d 15.5 at which time high levels are detected in the cartilage primordia. Laminin and collagen type IV, other basal lamina proteins commonly found colocalized with Pln, are absent from the cartilage primordia. Accumulation of Pln mRNA, detected by in situ hybridization, was increased in d 14.5 embryos. Cartilage primordia expression decreased to levels similar to that of the surrounding tissue at d 15.5. Pln accumulation in developing cartilage is preceded by that of collagen type II. To gain insight into Pln function in chondrogenesis, an assay was developed to assess the potential inductive activity of Pln using multipotential 10T1/2 murine embryonic fibroblast cells. Culture on Pln, but not on a variety of other matrices, stimulated extensive formation of dense nodules reminiscent of embryonic cartilaginous condensations. These nodules stained intensely with Alcian blue and collagen type II antibodies. mRNA encoding chondrocyte markers including collagen type II, aggrecan, and Pln was elevated in 10T1/2 cells cultured on Pln. Human chondrocytes that otherwise rapidly dedifferentiate during in vitro culture also formed nodules and expressed high levels of chondrocytic marker proteins when cultured on Pln. Collectively, these studies demonstrate that Pln is not only a marker of chondrogenesis, but also strongly potentiates chondrogenic differentiation in vitro.  相似文献   

2.
Type X collagen, a product of hypertrophic chondrocytes.   总被引:14,自引:1,他引:13       下载免费PDF全文
The synthesis of collagen types IX and X by explants of chick-embryo cartilages was investigated. When sternal cartilage labelled for 24h with [3H]proline was extracted with 4M-guanidinium chloride, up to 20% of the 3H-labelled collagen laid down in the tissue could be accounted for by the low-Mr collagenous polypeptides (H and J chains) of type IX collagen; but no type X collagen could be detected. Explants of tibiotarsal and femoral cartilages were found to synthesize type IX collagen mainly in zones 1 and 2 of chondrocyte proliferation and elongation, whereas type X collagen was shown to be a product of the hypertrophic chondrocytes in zone 3. Pulse-chase experiments with tibiotarsal (zone-3) explants demonstrated a time-dependent conversion of type X procollagen into a smaller species whose polypeptides were of Mr 49 000. The processed chains [alpha 1(X) chains] were shown by peptide mapping techniques to share a common identity with the pro alpha 1(X) chains of Mr 59 000. No evidence for processing of type IX collagen was obtained in analogous pulse-chase experiments with sternal tissue. When chondrocytes from tibiotarsal cartilage (zone 3) were cultured on plastic under standard conditions for 4-10 weeks they released large amounts of type X procollagen into the medium. However, 2M-MgCl2 extracts of the cell layer were found to contain mainly the processed collagen comprising alpha 1(X) chains. The native type X procollagen purified from culture medium was shown by rotary shadowing to occur as a short rod-like molecule 148 nm in length with a terminal globular extension, whereas the processed species comprising alpha 1(X) chains of Mr 49 000 was detected by electron microscopy as the linear 148 nm segment.  相似文献   

3.
4.
We have studied binding to collagen of the 59-kDa protein present in most connective tissues. Collagen fibril formation, measured as increasing turbidity, was markedly retarded and reduced by the presence of small amounts of this protein. This was true for both collagen I and collagen II. The effect was also observed when pepsin-treated collagens were used, indicating that interaction with the telopeptides is not involved. The proportion of collagen precipitated in the assay was not or only marginally reduced. Thus, the altered optical properties indicate that structurally different fibrils are formed in the presence of the 59-kDa protein. The 59-kDa protein bound to collagen I or collagen II that had been insolubilized on polystyrene 96-well microtiter plates, as measured by enzyme-linked immunosorbent assay. Analogously, binding to the collagens was demonstrated for the PG-S2 low Mr proteoglycan, previously shown only to inhibit collagen fibrillogenesis. The two matrix components showed similar strength of binding, i.e. Kd 35 nM for the 59-kDa protein and 16 nM for PG-S2 at 20 degrees C. The results do not reveal if the collagen interaction site of the 59-kDa protein is different from that of PG-S2. Our observations do, however, suggest that the 59-kDa protein, as well as PG-S2, have functions related to the regulation of collagen organization in tissues.  相似文献   

5.
The immunohistochemical localization of types I and II collagen was examined in the following 4 cartilaginous tissues of the rat craniofacial region: the nasal septal cartilage and the spheno-occipital synchondrosis (primary cartilages), and the mandibular condylar cartilage and the cartilage at the intermaxillary suture (secondary cartilages). In both primary cartilages, type II collagen was present in the extracellular matrix (ECM) of the whole cartilaginous area, but type I collagen was completely absent from the ECM. In the secondary cartilages, type I collagen was present throughout the cartilaginous cell layers, and type II collagen was restricted to the ECM of the mature and hypertrophic cell layers. These observations indicate differences in the ECM components between primary and secondary craniofacial cartilages, and that these differences may contribute to their modes of chondrogenesis.  相似文献   

6.
7.
In order to characterize the consequences for the process of endochondral ossification we performed an immunohistochemical study and compared the expression of collagen type I, II and X as markers of cartilage differentiation and Ki-67 as a marker of cell proliferation in solitary (7-26 years, n=9) and multiple (11-42 years, n=6) osteochondromas with their expression in human fetal and postnatal growth plates. In fetal and young postnatal controls, we found a thin superficial layer of articular cartilage that stained positive for collagen type I while collagen II was expressed in the rest of the cartilage and collagen type X was restricted to the hypertrophic zone. Osteochondromas from children showed lobular collagen type II-positive areas surrounded by collagen type I. In adults, the separation of collagen type I- and type II-positive areas was more blurred, or the cartilaginous cap was missing. Collagen type X was detected in a pericellular distribution pattern within hypertrophic zones but also deeper between bone trabecula. The proliferative activity of osteochondromas from children younger than 14 years of age was comparable to postnatal growth plates, whereas in cartilage from individuals older than 14 years of age, we could not detect significant proliferative activity.  相似文献   

8.
We have examined the temporal expression of genes for extracellular matrix proteins (type I collagen, type II collagen, and the cartilage specific proteoglycan core protein) during the development of the avian mandibular arch. We detected low levels of type II collagen mRNA in the mandibular arch as early as stage 15. Type II collagen mRNA remained low but increased slightly as development progressed from stage 15 to stage 25. More dramatic increases occurred after stage 25 coincident with overt chondrogenesis. In contrast, mRNA for the core protein of cartilage specific proteoglycan was not detected prior to the onset of chondrogenesis, appeared at stage 25, and increased thereafter. Type I collagen mRNA was also present as early as stage 15 and dramatically increased after stage 28/29, coincident with initiation of osteogenesis. Using in situ hybridization, we found that type II collagen mRNA became detectable in the center of the mandible around stage 24/25 coincident with the initiation of chondrogenesis. At later stages (26-32) type II collagen mRNA was localized in the cartilaginous rudiment. The pattern of hybridization observed with the proteoglycan core protein probe at later stages of development was essentially identical to that observed with the type II collagen probe. In contrast, the probe for the alpha 1 (I) collagen mRNA was localized over the perichondrium, over differentiated bone, and in areas within the mandibular arch where bone formation had been initiated.  相似文献   

9.
The distribution of type II collagen, considered to be characteristic of cartilaginous tissues, was determined in various specialized cartilages of the mature pig. The tissues examined were: (1) fibrocartilage of the semilunar meniscus of the knee; (2) elastic cartilage of the external ear; (3) hyaline cartilage of (a) the synovial joint (b) the thyroid plate of the larynx, and (c) the nasal septum. The predominant species of collagen in each tissue, whether type I or type II, was appraised semi-quantitatively by analysis of purified collagen solubilized by pepsin and of peptide fragments produced by cyanogen bromide. Cyanogen bromide-derived peptides were characterized by column chromatography on CM-cellulose and by electrophoresis in sodium dodecyl sulphate-polyacrylamide gels. The proportion of each type of collagen was determined precisely by isolating the homologous small peptides alpha1(II)CB6 [nomenclature of Miller (1973) Clin. Orthop. 92, 260-280], by column chromatography on phosphocellulose and determining their relative proportions by amino acid analysis. Thus collagen of the fibrocartilage of the meniscus proved to be all type I; type II was not detected. In contrast, collagen of elastic cartilage of the outer ear, after rigorous exclusion of perichondrium, was type II. Similarly, type II was the only collagen detected in all the mature hyalline cartilages examined.  相似文献   

10.
11.
Nasal cartilage cells from 21-day-old rat fetuses were cultured at high density in the presence of ascorbic acid and β-glycerophosphate over a 12-day period. Immediately after plating, the cells exhibited a fibroblastic morphology, lost their chondrocyte phenotype and expressed type I collagen. On day 3, clusters of enlarged polygonal cells were found. These cell clusters synthetised type II collagen and formed an alcian-blue-positive matrix. The following days, a progressive increase in the number of cells positive for type 11 collagen was noted and, on day 8, typical cartilaginous nodules were formed. These nodules increased in size and number, spreading outward, laying down a dense matrix which mineralized. Light and electron microscopy observations of cross-sections of nodules confirmed the cartilaginous nature of this tissue formed in vitro with typical chondrocytes embedded in a hyaline matrix. Furthermore, at the electron microscopic level, matrix vesicles were seen in extracellular matrix associated with the initiation of mineralization. Typical rod-like crystals were present in the intercellular spaces along the collagen fibers. These results indicated that in a specific environment, dedifferentiated chondrocytes were able to redifferentiate and to form nodular structures with morphological ultrastructure of calcified cartilage observed in vivo.  相似文献   

12.
The temporal and spatial distribution of type I collagen, type II collagen, cartilage-specific proteoglycan (CSPG) and fibronectin in mouse mandible is described. CD-1 mouse embryos of 12-, 15-, and 18-day gestation were used, and matrix molecules were localized using indirect immunofluorescence. On day 12, accumulation of type II collagen, CSPG, and fibronectin within regions of condensed mesenchyme was noted. On day 15, intense staining for type II collagen and CSPG occurred. Fibronectin was less brilliant with its greatest concentration near the perichondrium. On day 18, the cartilage matrix was undergoing osseous replacement concurrent with loss of type II collagen and CSPG. Type I collagen was seen in the perichondrium, membranous bone and sub-basement membrane region in specimens of all ages. Synthesis and expression of extracellular matrix molecules reflect patterns of differentiation in mandibular mesenchyme.  相似文献   

13.
Type X collagen was extracted with 1 M NaCl and 10 mM dithiothreitol at neutral pH from fetal human growth plate cartilage and purified to homogeneity by gel filtration and anion-exchange chromatography. The purified protein migrates in SDS/polyacrylamide gels with an apparent Mr of 66,000 under reducing conditions, and as a high-Mr oligomer under non-reducing conditions. Purified collagenase digests most of the molecule; pepsin digestion at 4 degrees C decreases the Mr of the monomer to 53,000. A rabbit antiserum was raised against purified human type X collagen; the IgG fraction was specific for this collagen by criteria of ELISA and immunoblotting after absorption with collagen types I, II, VI, IX and XI. Immunohistological studies localized type X collagen exclusively in the zone of hypertrophic and calcifying cartilage.  相似文献   

14.
Human mesenchymal stem cells (MSCs) were cultured in vitro in a cobweb-like biodegradable polymer scaffold: a poly(dl-lactic-co-glycolic acid)-collagen hybrid mesh in serum-free DMEM containing TGF-beta3 for 1-10 weeks. The cells adhered to the hybrid mesh, distributed evenly, and proliferated to fill the spaces in the scaffold. The ability of the cells to express gene encoding type I collagen decreased, whereas its ability to express type II collagen and aggrecan increased. Histological examination by HE staining indicated that the cells showed fibroblast morphology at the early stage and became round after culture for 4 weeks. The cartilaginous matrices were positively stained by safranin O and toluidine blue. Immunostaining with anti-type II collagen and anti-cartilage proteoglycan showed that type II collagen and cartilage proteoglycan were detected around the cells. In addition, a homogeneous distribution of cartilaginous extracellular matrices was detected around the cells. These results suggest the chondrogenic differentiation of the mesenchymal stem cells in the hybrid mesh. The PLGA-collagen hybrid mesh enabled the aggregation of mesenchymal stem cells and provided a promotive microenvironment for the chondrogenic differentiation of the MSCs.  相似文献   

15.
Immunohistochemical localization of type I and type II collagens was examined in the rat mandibular condylar cartilage (as the secondary cartilage) and compared with that in the tibial growth plate (as the primary cartilage) using plastic embedded tissues. In the condylar cartilage, type I collagen was present not only in the extracellular matrix (ECM) of the fibrous, proliferative, and transitional cell layers, but also in the ECM of the maturative and hypertrophic cell layers. Type II collagen was present in the ECM of the maturative and hypertrophic cell layers. In the growth plate, type II collagen was present in the ECM of whole cartilaginous layers; type I collagen was not present in the cartilage but in the perichondrium and the bone matrices. These results indicate that differences exist in the components of the ECM between the primary and secondary cartilages. It is suggested that these two tissues differ in the developmental processes and/or in the reactions to their own local functional needs.  相似文献   

16.
Undifferentiated progenitor cells of mandibular condyles of neonatal mice were kept in a tissue culture system for up to 9 days. After 2 days in culture, new chondroblasts developed within the explants, whereas the peripheries of the latter were occupied by undifferentiated cells undergoing mitosis. By 4 days in culture, many of the cartilage cells showed signs of hypertrophy, while the matrix revealed positive reactivity for type II collagen and matrix metachromasia. The process of maturation of cartilage cells appeared to have reached its final stages after 6 days in culture, at a time when the initial loci of matrix mineralization could be easily identified. Concomitantly, peripheral areas bordering the cartilaginous core, as well as portions of the cartilage, reacted positively for type I collagen and fibronectin. Light microscopy examination showed signs of new bone formation after 9 days in culture. The extracellular matrix at the upper portion of the explant, facing the medium-air interface, reacted intensely with antibodies against type I collagen and fibronectin, but not with antibodies against type II collagen. Further, the newly formed osteoid was found to have undergone mineralization, thus forming an expanded layer of new bony tissue. A close spatial association was found between mature, mineralized cartilage and new bone. Hence, we hereby introduce a new in vitro system serving as an experimental model for studies related to the differentiation of progenitor cells into chondroblasts, which in turn promote ossification.  相似文献   

17.
Monoclonal antibodies to chick type X collagen have been used to study the structure, biosynthesis, and location of type X in cartilage. The antibodies were produced by injecting purified type X collagen into female SJL/J mice and then fusing their spleen cells with Sp2/0 myeloma cells. Hybridoma culture supernatants were screened for antibodies to type X collagen by enzyme-linked immunosorbent assay and Western blots. Positive supernatants did not cross-react with other collagen types (I, II, IX, XI) or with fibronectin. Three monoclonal antibodies were chosen for further characterization. Two of them (1A6 and 6F6) recognize a pepsin-sensitive domain of type X collagen. Rotary shadowing showed that 1A6 and 6F6 both recognize the same end of type X, probably the aminoterminal non-triple helical domain. Amino acid sequencing of the intact protein and of the epitope-containing peptide confirmed that the antibody recognition sites for 1A6 and 6F6 are within the amino-terminal domain. Monoclonal antibody 2B3 reacts with the pepsinized (45 kDa) and weakly with the nonpepsinized (59 kDa) forms of type X collagen. The monoclonal antibodies were used for immunolocalization of type X in hypertrophic chondrocytes and reacted only with tissue samples from areas undergoing endochondral ossification, e.g. growth plate and fracture callus. Antibody 6F6, when coupled to Sepharose, selectively binds to type X collagen from cell and organ cultures. In a pulse-chase experiment, no processing of the 59-kDa form of type X could be detected. Two components with molecular masses of approximately 70 and 85 kDa, arising from a disulfide-bonded aggregate, were synthesized by both the permanent and calcifying cartilage organ cultures but did not react with the antibody, suggesting that these proteins are not related to type X. In summary, the pulse-chase results and the immune precipitation with monoclonal antibody 6F6 did not detect biosynthetic precursors larger than 59 kDa or proteolytically processed forms of type X.  相似文献   

18.
19.
The transition of type I and type II collagens during cartilage and bone development in the chick embryo was studied by immunofluorescence using antibodies against type I or type II collagens. Type II collagen was found in all cartilaginous structures which showed metachromatic staining. Type I collagen appeared in the perichondrium of the tibia at stage 28 and was also found in osteoid, periosteal and enchondral bone after decalcification, periosteum, and tendons, ligaments, and capsules.Using the immunohistological method it was possible to identify specific collagen types in areas undergoing rapid proliferation and collagen transition, such as diaphyseal and epiphyseal perichondrium, or in enchondral osteogenesis. During enchondral ossification type I collagen is deposited onto the eroded surface of cartilage. It partially diffuses into the cartilage matrix forming a “hybrid” collagen matrix with type II collagen, which is a site for subsequent ossification. During appositional growth of diaphyseal cartilage and differentiation of epiphyseal perichondrium into articular cartilage, perichondral cells switch from type I to type II collagen synthesis when differentiating into chondroblasts. In the transition zones, chondroblasts are imbedded in a “hybrid” matrix consisting of a mixture of type I and type II collagens.  相似文献   

20.
Human adipose tissue is a viable source of mesenchymal stem cells (MSCs) with wide differentiation potential for musculoskeletal tissue engineering research. The stem cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and expanded in vitro easily. This study was to determine molecular and cellular characterization of PLA cells during chondrogenic differentiation in vitro and cartilage formation in vivo . When cultured in vitro with chondrogenic medium as monolayers in high density, they could be induced toward the chondrogenic lineages. To determine their ability of cartilage formation in vivo , the induced cells in alginate gel were implanted in nude mice subcutaneously for up to 20 weeks. Histological and immunohistochemical analysis of the induced cells and retrieved specimens from nude mice at various intervals showed obviously cartilaginous phenotype with positive staining of specific extracellular matrix (ECM). Correlatively, results of RT-PCR and Western Blot confirmed the expression of characteristic molecules during chondrogenic differentiation namely collagen type II, SOX9, cartilage oligomeric protein (COMP) and the cartilage-specific proteoglycan aggrecan. Meanwhile, there was low level synthesis of collagen type X and decreasing production of collagen type I during induction in vitro and formation of cartilaginous tissue in vivo . These cells induced to form engineered cartilage can maintain the stable phenotype and indicate no sign of hypertrophy in 20 weeks in vivo , however, when they cultured as monolayers, they showed prehypertrophic alteration in late stage about 10 weeks after induction. Therefore, it is suggested that human adipose tissue may represent a novel plentiful source of multipotential stem cells capable of undergoing chondrogenesis and forming engineered cartilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号