首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Granule-mediated cell killing by cytotoxic lymphocytes requires the combined actions of a membranolytic protein, perforin, and granule-associated granzymes, but the mechanism by which they jointly kill cells is poorly understood. We have tested a series of membrane-disruptive agents including bacterial pore-forming toxins and hemolytic complement for their ability to replace perforin in facilitating granzyme B-mediated cell death. As with perforin, low concentrations of streptolysin O and pneumolysin (causing <10% (51)Cr release) permitted granzyme B-dependent apoptosis of Jurkat and Yac-1 cells, but staphylococcal alpha-toxin and complement were ineffective, regardless of concentration. The ensuing nuclear apoptotic damage was caspase dependent and included cleavage of poly(ADP-ribose) polymerase, suggesting a mode of action similar to that of perforin. The plasma membrane lesions formed at low dose by perforin, pneumolysin, and streptolysin did not permit diffusion of fluorescein-labeled proteins as small as 8 kDa into the cell, indicating that large membrane defects are not necessary for granzymes (32 to 65 kDa) to enter the cytosol and induce apoptosis. The endosomolytic toxin, listeriolysin O, also effected granzyme B-mediated cell death at concentrations which produced no appreciable cell membrane damage. Cells pretreated with inhibitors of endosomal trafficking such as brefeldin A took up granzyme B normally but demonstrated seriously impaired nuclear targeting of granzyme B when perforin was also added, indicating that an important role of perforin is to disrupt vesicular protein trafficking. Surprisingly, cells exposed to granzyme B with perforin concentrations that produced nearly maximal (51)Cr release (1,600 U/ml) also underwent apoptosis despite excluding a 8-kDa fluorescein-labeled protein marker. Only at concentrations of >4,000 U/ml were perforin pores demonstrably large enough to account for transmembrane diffusion of granzyme B. We conclude that pore formation may allow granzyme B direct cytosolic access only when perforin is delivered at very high concentrations, while perforin's ability to disrupt endosomal trafficking may be crucial when it is present at lower concentrations or in killing cells that efficiently repair perforin pores.  相似文献   

2.
The molecular interaction of secreted granzyme B-serglycin complexes with target cells remains undefined. Targets exposed to double-labeled granzyme B-serglycin complexes show solely the uptake of granzyme B. An in vitro model demonstrates the exchange of the granzyme from serglycin to immobilized, sulfated glycosaminoglycans. Using a combination of cell binding and internalization assays, granzyme B was found to exchange to sulfated glycosaminoglycans and, depending on the cell type, to higher affinity sites. Apoptosis induced by purified granzyme B and cytotoxic T-cells was diminished in targets with reduced cell surface glycosaminoglycan content. A mechanism of delivery is proposed entailing electrostatic transfer of granzyme B from serglycin to cell surface proteins.  相似文献   

3.
We used yeast two-hybrid screening to identify the cytoskeletal protein filamin as a ligand for the proapoptotic protease granzyme B, produced by cytotoxic T lymphocytes. Filamin was directly cleaved by granzyme B when target cells were exposed to granzyme B and the lytic protein perforin, but it was also cleaved in a caspase-dependent manner following the ligation of Fas receptors. A similar pattern of filamin cleavage to polypeptides of approximately 110 and 95 kDa was observed in Jurkat cells killed by either mechanism. However, filamin cleavage in response to granzyme B was not inhibited by the caspase inhibitor z-Val-Ala-Asp-fluoromethylketone at concentrations that abolished DNA fragmentation. Filamin staining was redistributed from the cell membrane into the cytoplasm of Jurkat cells exposed to granzyme B and perforin and following ligation of Fas receptors, coincident with the morphological changes of apoptosis. Filamin-deficient human melanoma cells were significantly (although not completely) protected from granzyme B-mediated death compared with isogenic filamin-expressing cells, both in clonogenic survival and (51)Cr release assays, whereas death from multiple other stimuli was not affected by filamin deficiency. Thus, filamin is a functionally important substrate for granzyme B, as its cleavage may account at least partly for caspase-independent cell death mediated by the granzyme.  相似文献   

4.
Nuclear translocation of granzyme B in target cell apoptosis   总被引:4,自引:0,他引:4  
Granzyme B is the prototypic member of a family of serine proteases localized to the cytolytic granules of cytotoxic lymphocytes. Together with another granule protein, perforin, granzyme B is capable of inducing all aspects of apoptotic death in target cells. A number of granzyme B substrates have been identified and it has been demonstrated that granzyme B is responsible, directly or indirectly, for the morphological nuclear changes observed in target cell apoptosis, including DNA fragmentation. In an earlier study, we showed that granzyme B binds to a nuclear protein in a manner dependent on its enzymatic activity. Here, we demonstrate that granzyme B is translocated rapidly to the nucleus in cells that have been induced to undergo apoptosis by a granzyme-dependent process, and that translocation is dependent on caspase activity. Appearance of granzyme B in the nucleus of target cells precedes the detection of DNA fragmentation. Although not directly responsible for DNA fragmentation, these data suggest a nuclear role for granzyme B in target cell apoptosis. c-Abl nuclear functions.  相似文献   

5.
Host defense to the apicomplexan parasite Toxoplasma gondii is critically dependent on CD8+ T cells, whose effector functions include the induction of apoptosis in target cells following the secretion of granzyme proteases. Here we demonstrate that T. gondii induces resistance of host cells to apoptosis induced by recombinant granzyme B. Granzyme B induction of caspase-independent cytochrome c release was blocked in T. gondii-infected cells. Prevention of apoptosis could not be attributed to altered expression of the Bcl-2 family of apoptotic regulatory proteins, but was instead associated with reduced granzyme B-mediated, caspase-independent cleavage of procaspase 3 to the p20 form in T. gondii-infected cells, as well as reduced granzyme B-mediated cleavage of the artificial granzyme B substrate, GranToxiLux. The reduction in granzyme B proteolytic function in T. gondii-infected cells could not be attributed to altered granzyme B uptake or reduced trafficking of granzyme B to the cytosol, implying a T. gondii-mediated inhibition of granzyme B activity. Apoptosis and GranToxiLux cleavage were similarly inhibited in T. gondii-infected cells exposed to the natural killer-like cell line YT-1. The endogenous granzyme B inhibitor PI-9 was not up-regulated in infected cells. We believe these findings represent the first demonstration of granzyme B inhibition by a cellular pathogen and indicate a new modality for host cell protection by T. gondii that may contribute to parasite immune evasion.  相似文献   

6.
Cathepsin C activates serine proteases expressed in hematopoietic cells by cleaving an N-terminal dipeptide from the proenzyme upon granule packaging. The lymphocytes of cathepsin C-null mice are therefore proposed to totally lack granzyme B activity and perforin-dependent cytotoxicity. Surprisingly, we show, using live cell microscopy and other methodologies, that cells targeted by allogenic CD8(+) cytotoxic T lymphocyte (CTL) raised in cathepsin C-null mice die through perforin-dependent apoptosis indistinguishable from that induced by wild-type CTL. The cathepsin C-null CTL expressed reduced but still appreciable granzyme B activity, but minimal granzyme A activity. Also, in contrast to mice with inactivation of both their granzyme A/B genes, cathepsin C deficiency did not confer susceptibility to ectromelia virus infection in vivo. Overall, our results indicate that although cathepsin C clearly generates the majority of granzyme B activity, some is still generated in its absence, pointing to alternative mechanisms for granzyme B processing and activation. Cathepsin C deficiency also results in considerably milder immune deficiency than perforin or granzyme A/B deficiency.  相似文献   

7.
During granule-mediated killing by cytotoxic T lymphocytes or natural killer cells, the serine protease granzyme B enters the target cell by endocytosis and induces apoptosis. Previous studies suggested a role for the mannose 6-phosphate receptor, but further experiments with purified granzyme B indicated this was not essential. Additionally, it is now clear that grB is exocytosed from killer cells in a high-molecular-weight complex with the proteoglycan serglycin. Here granzyme B was delivered as a purified monomer, or in complex with either glycosaminoglycans or serglycin, and killing was evaluated. When granzyme B was a monomer, soluble mannose 6-phosphate had a limited impact, whereas apoptosis induced by the complexed grB was effectively inhibited by mannose 6-phosphate. Most importantly, when granzyme B and perforin were delivered together from granules, inhibition by mannose 6-phosphate was also observed. In pulldown assays mediated by the cation-independent mannose 6-phosphate receptor, granzyme B bound to the receptor more intensely in the presence of immobilized heparan sulfate. We therefore propose the model that under physiological conditions serglycin-bound granzyme B is critically endocytosed by a mannose 6-phosphate receptor, and receptor binding is enhanced by cell surface heparan sulfate.  相似文献   

8.
Activated cytotoxic T lymphocyte (CTL) mediated target cell death has been implicated in the development of systemic autoimmune disease like SLE. However, the role of soluble granzyme B and its relationship with CTL activity and disease activity is still unknown. In this study, we evaluated role of soluble granzyme B and cytotoxic T lymphocyte activity in SLE patients. The soluble granzyme B was measured in the serum by an enzyme-linked immunosorbent assay while cytotoxic T lymphocyte activity was measured by flow cytometry. The disease activity was determined by using SLE Disease Activity Index (SLEDAI) score. Cytotoxic T lymphocyte activity was increased and strongly associated with disease activity. The soluble granzyme B levels were higher in SLE patients and associated with various clinical features like reduced complement components; C3 & C4 and skin lesion. The soluble granzyme B levels were also sturdily related with severity of the disease. The findings of this study suggest that excessive secretion of soluble granzyme B and enhanced activity of cytotoxic T lymphocyte may play a vital role in the pathogenesis of SLE and organ damage. Also, evaluation of soluble granzyme B may be helpful in monitoring the clinical features associated with activated CTL in SLE.  相似文献   

9.
Granzyme B is critical to the ability of natural killer cells and cytotoxic T lymphocytes to induce efficient cell death of virally infected or tumor cell targets. Although granzyme B can cleave and activate caspases to induce apoptosis, granzyme B can also cause caspase-independent cell death. Thirteen prospective granzyme B substrates were identified from a cDNA expression-cleavage screen, including Hsp70, Notch1, fibroblast growth factor receptor-1 (FGFR1), poly-A-binding protein, cAbl, heterogeneous nuclear ribonucleoprotein H', Br140, and intersectin-1. Validation revealed that Notch1 is a substrate of both granzyme B and caspases, whereas FGFR1 is a caspase-independent substrate of granzyme B. Proteolysis of FGFR1 in prostate cancer cells has functionally relevant consequences that indicate its cleavage may be advantageous for granzyme B to kill prostate cancer cells. Therefore, granzyme B not only activates pro-death functions within a target, but also has a previously unidentified role in inactivating pro-growth signals to cause cell death.  相似文献   

10.
11.
Mouse granzyme B is a member of the chymotrypsin family of serine proteinases that has an unusual preference for cleavage of substrates following aspartate residues. We show here that granzyme B can be redesigned by a single amino acid substitution in one wall of the specificity pocket, arginine-226 to glutamate, to hydrolyze preferentially thioester substrates following basic amino acids. Amide substrates, however, were not hydrolyzed by the variant granzyme B. These results show that residue 226 is a primary determinant of granzyme B specificity and imply that additional structural components are required for catalysis of amide bonds. Molecular modeling indicated subtle variation in glutamate-226 orientation depending upon the state of protonation of the gamma-carboxylate, which may account for the secondary specificity of this enzyme for substrates containing phenylalanine. This represents the first example of electrostatic reversal of serine proteinase substrate specificity and suggests that residue 226 is a primary substrate specificity determinant in the granzyme B lineage of serine proteinases.  相似文献   

12.
Granzyme B has been purified to homogeneity from the granules of a human cytolytic lymphocyte line, Q31, in an enzymatically active form by a three-step procedure. Q31 granzyme B hydrolyzed Na-t-butyloxycarbonyl-L-alanyl-L-alanyl-L-aspartyl (Boc-Ala-Ala-Asp) thiobenzyl ester with a kcat of 11 +/- 5 mol/s/mol enzyme and catalytic efficiency kcat/Km of 76,000 +/- 44,000 M-1 s-1. The hydrolysis of Boc-Ala-Ala-Asp thiobenzyl ester by crude Q31 Percoll fractions paralleled the tryptase activity for granule-containing fractions, which showed that granzyme B was associated with granules. When chromatographed on Sephacryl S-300, Q31 granzyme B eluted in two broad bands corresponding to dimer and monomer, both of which electrophoresed at 35 kDa in reducing NaDodSo4 polyacrylamide, and both of which showed a lag phase in assays. The lag phase in assays could be extended with 0.03 mM pepstatin. Upon elution from ion-exchange chromatography Q31 granzyme B electrophoresed at 32 kDa in reducing NaDodSO4 polyacrylamide and did not have a lag phase in assays. The amino-terminal sequence of the 32-kDa Q31 granzyme B was identical to four other human cytotoxic T-lymphocyte granzymes B in 18 of 18 positions sequenced. Purified Q31 granzyme B had a preference for substrates with Glu or Asp as the residue amino-terminal to the scissile bond; little or no activity was noted with oligopeptide substrates for trypsin-like, chymotrypsin-like, and elastase-like proteases. Human plasma alpha 1-protease inhibitor, human plasma alpha 2-protease macroglobulin, soybean and lima-bean trypsin inhibitors, bovine aprotinin, phosphoramidon, and chymostatin inhibited Q31 granzyme B. The inhibition by alpha 1-protease inhibitor was rapid enough to be of physiological significance.  相似文献   

13.
A central role for Bid in granzyme B-induced apoptosis   总被引:7,自引:0,他引:7  
Granzyme B, a protease released from cytotoxic lymphocytes, has been proposed to induce target cell death by cleaving and activating the pro-apoptotic Bcl-2 family member Bid. It has also been proposed that granzyme B can induce target cell death by activating caspases directly, by cleaving caspase substrates, and/or by cleaving several non-caspase substrates. The relative importance of Bid in granzyme B-induced cell death has therefore remained unclear. Here we report that cells isolated from various tissues of Bid-deficient mice were resistant to granzyme B-induced cell death. Consistent with the proposed role of Bid in regulating mitochondrial outer membrane permeabilization, cytochrome c remained in the mitochondria of Bid-deficient cells treated with granzyme B. Unlike wild type cells, Bid-deficient cells survived and were then able to proliferate normally, demonstrating the critical role for Bid in mediating granzyme B-induced apoptosis.  相似文献   

14.
Cytotoxic T lymphocytes kill virus-infected and tumor cell targets through the concerted action of proteins contained in cytolytic granules, primarily granzyme B and perforin. Granzyme B, a serine proteinase with substrate specificity similar to the caspase family of apoptotic cysteine proteinases, is capable of cleaving and activating a number of death proteins in target cells. Despite the ability to engage the death pathway at multiple entry points, the preferred mechanism for rapid induction of apoptosis by granzyme B has yet to be clearly established. Here we use time lapse confocal microscopy to demonstrate that mitochondrial cytochrome c release is the primary mode of granzyme B-induced apoptosis and that Bcl-2 is a potent inhibitor of this pivotal event. Caspase activation is not required for cytochrome c release, an activity that correlates with cleavage and activation of Bid, which we have found to be cleaved more readily by granzyme B than either caspase-3 or caspase-8. Bcl-2 blocks the rapid destruction of targets by granzyme B by blocking mitochondrial involvement in the process.  相似文献   

15.
Granzyme B is an important mediator of cytotoxic lymphocyte granule-induced death of target cells, accomplishing this through cleavage of Bid and cleavage and activation of caspases as well as direct cleavage of downstream substrates. Significant controversy exists regarding the primary pathways used by granzyme B to induce cell death, perhaps arising from the use of different protease/substrate combinations in different studies. The primary sequence of human, rat, and mouse granzymes B is well conserved, and the substrate specificity and crystal structure of the human and rat proteases are extremely similar. Although little is known about the substrate specificity of mouse granzyme B, recent studies suggest that it may differ significantly from the human protease. In these studies we show that the specificities of human and mouse granzymes B differ significantly. Human and mouse granzyme B cleave species-specific procaspase-3 more efficiently than the unmatched substrates. The distinct specificities of human and mouse granzyme B highlight a previously unappreciated requirement for Asp(192) in the acquisition of catalytic activity upon cleavage of procaspase-3 at Asp(175). Although human granzyme B efficiently cleaves human or mouse Bid, these substrates are highly resistant to cleavage by the mouse protease, strongly indicating that the Bid pathway is not a major primary mediator of the effects of mouse granzyme B. These studies provide important insights into the substrate specificity and function of the granzyme B pathway in different species and highlight that caution is essential when designing and interpreting experiments with different forms of granzyme B.  相似文献   

16.
Cytotoxic lymphocytes (CLs) induce caspase activation and apoptosis of target cells either through Fas activation or through release of granule cytotoxins, particularly granzyme B. CLs themselves resist granule-mediated apoptosis but are eventually cleared via Fas-mediated apoptosis. Here we show that the CL cytoplasmic serpin proteinase inhibitor 9 (PI-9) can protect transfected cells against apoptosis induced by either purified granzyme B and perforin or intact CLs. A PI-9 P1 mutant (Glu to Asp) is a 100-fold-less-efficient granzyme B inhibitor that no longer protects against granzyme B-mediated apoptosis. PI-9 is highly specific for granzyme B because it does not inhibit eight of the nine caspases tested or protect transfected cells against Fas-mediated apoptosis. In contrast, the P1(Asp) mutant is an effective caspase inhibitor that protects against Fas-mediated apoptosis. We propose that PI-9 shields CLs specifically against misdirected granzyme B to prevent autolysis or fratricide, but it does not interfere with homeostatic deletion via Fas-mediated apoptosis.  相似文献   

17.
The cytotoxic lymphocyte serine proteinase granzyme B induces apoptosis of abnormal cells by cleaving intracellular proteins at sites similar to those cleaved by caspases. Understanding the substrate specificity of granzyme B will help to identify natural targets and develop better inhibitors or substrates. Here we have used the interaction of human granzyme B with a cognate serpin, proteinase inhibitor 9 (PI-9), to examine its substrate sequence requirements. Cleavage and sequencing experiments demonstrated that Glu(340) is the P1 residue in the PI-9 RCL, consistent with the preference of granzyme B for acidic P1 residues. Ala-scanning mutagenesis demonstrated that the P4-P4' region of the PI-9 RCL is important for interaction with granzyme B, and that the P4' residue (Glu(344)) is required for efficient serpin-proteinase binding. Peptide substrates based on the P4-P4' PI-9 RCL sequence and containing either P1 Glu or P1 Asp were cleaved by granzyme B (k(cat)/K(m) 9.5 x 10(3) and 1.2 x 10(5) s(-1) M(-1), respectively) but were not recognized by caspases. A substrate containing P1 Asp but lacking P4' Glu was cleaved less efficiently (k(cat)/K(m) 5.3 x 10(4) s(-1) M(-1)). An idealized substrate comprising the previously described optimal P4-P1 sequence (Ile-Glu-Pro-Asp) fused to the PI-9 P1'-P4' sequence was efficiently cleaved by granzyme B (k(cat)/K(m) 7.5 x 10(5) s(-1) M(-1)) and was also recognized by caspases. This contrasts with the literature value for a tetrapeptide comprising the same P4-P1 sequence (k(cat)/K(m) 6.7 x 10(4) s(-1) M(-1)) and confirms that P' residues promote efficient interaction of granzyme B with substrates. Finally, molecular modeling predicted that PI-9 Glu(344) forms a salt bridge with Lys(27) of granzyme B, and we showed that a K27A mutant of granzyme B binds less efficiently to PI-9 and to substrates containing a P4' Glu. We conclude that granzyme B requires an extended substrate sequence for specific and efficient binding and propose that an acidic P4' substrate residue allows discrimination between early (high affinity) and late (lower affinity) targets during the induction of apoptosis.  相似文献   

18.
Serine protease inhibitors (serpins) are a family of structurally related proteins that play key roles in the regulation of proteolytic homeostasis. We have isolated a novel intracellular serpin, termed raPIT5a, from the rat pituitary gland. Northern blot analysis indicated raPIT5a mRNA expression in a range of tissues, including the adrenal gland and the brain. In situ hybridisation histochemistry revealed raPIT5a mRNA expression in specific cell populations in the rat pituitary gland, adrenal gland, and pancreas. Based on sequence similarities to other intracellular serpins, we predicted raPIT5a may inhibit the pro-apoptotic serine protease granzyme B. We confirmed this experimentally by identification of a stable inhibitory complex between granzyme B and raPIT5a. To determine whether granzyme B or granzyme B-related enzymes were expressed in the rat pituitary gland, we performed PCR using primers predicted to amplify granzyme B and two other published granzyme sequences. We identified rat natural killer protease-1 (RNKP-1), the rat homologue of granzyme B, and a novel putative serine protease highly similar to granzyme-like protein III (GLP III), which we termed GLP IIIa. These data suggest raPIT5a may regulate apoptosis in the pituitary by inhibition of granzyme B or GLP IIIa, or members of the caspase enzyme family which have similar substrate specificity. We have also identified expression of a second serpin, called neuroserpin, in pituitary tissue and found that it alters the morphology of the AtT20 corticotrope cell line, presumably through changes in cell adhesion. These results identify new roles for serpins in pituitary cell function.  相似文献   

19.
Dysregulated angiogenesis contributes to the pathogenesis of chronic inflammatory diseases. Modulation of the extracellular matrix by immune-derived proteases can alter endothelial cell–matrix interactions as well as endothelial cell sprouting, migration and capillary formation. Granzyme B is a serine protease that is expressed by a variety of immune cells, and accumulates in the extracellular milieu in many chronic inflammatory disorders that are associated with dysregulated angiogenesis. Although granzyme B is known to cleave fibronectin, an essential glycoprotein in vascular morphogenesis, the role of granzyme B in modulating angiogenesis is unknown. In the present study, granzyme B cleaved both plasma fibronectin and cell-derived fibronectin, resulting in the release of multiple fibronectin fragments. Granzyme B cleavage of fibronectin resulted in a dose-dependent reduction in endothelial cell adhesion to fibronectin as well as reduced endothelial cell migration and tubular formation. These events were prevented when granzyme B activity was inhibited by a small molecule inhibitor. In summary, granzyme B-mediated cleavage of fibronectin contributes to attenuated angiogenesis through the disruption of endothelial cell — fibronectin interaction resulting in impaired endothelial cell migration and tubular formation.  相似文献   

20.
Cytotoxic T lymphocytes (CTL) and natural killer cells secrete granzymes to kill infected or transformed cells. The mannose 6-phosphate receptor (Mpr) 300 on target cells has been reported to function as receptor for secreted granzyme B. Using lymphoblasts and mouse embryonal fibroblast lines from Mpr300 and Mpr46 knockout mice, we show here that both receptors are not essential for CTL-induced apoptosis. Similarly, cells exposed to either monomeric granzyme B or granzyme B-serglycin complexes readily internalize the granzyme and undergo apoptosis in the absence of Mpr300 and Mpr46. Further, no colocalization of granzyme B and Mpr300 could be observed in target cells after internalization. In conclusion, these results strongly argue against an Mpr300- or Mpr46-dependent pathway of granzyme-mediated killing and provide new insight in the internalization of monomeric and complexed granzyme B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号