首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Spores of Penicillium digitatum ATCC 201167 transform geraniol, nerol, citral, and geranic acid into methylheptenone. Spore extracts of P. digitatum convert geraniol and nerol NAD+-dependently into citral. Spore extract also converts citral NAD+-dependently into geranic acid. Furthermore, a novel enzymatic activity, citral lyase, which cofactor-independently converts citral into methylheptenone and acetaldehyde, was detected. These result show that spores of P. digitatum convert geraniol via a novel biotransformation pathway. This is the first time a biotransformation pathway in fungal spores has been substantiated by biochemical studies. Geraniol and nerol are converted into citral by citrol dehydrogenase activity. The citral formed is subsequently deacetylated by citral lyase activity, forming methylheptenone. Moreover, citral is converted reversibly into geranic acid by citral dehydrogenase activity.  相似文献   

2.
In the presence of a partially purified preparation of tyrosine phenol lyase, tyrosine is formed in solutions containing glycine, formaldehyde and phenol. The enzyme preparation also catalysed the splitting of allothreonine to glycine and acetaldehyde. An enzyme which is different from tyrosine phenol lyase was shown to be responsible for this aldolase reaction. When an enzyme preparation with a higher specific activity of tyrosine phenol lyase, but without aldolase activity, was used the formation of tyrosine from glycine, formaldehyde and phenol was not observed. It is assumed that the first stage of the process is the formation of serine from glycine and formaldehyde catalysed by the enzyme responsible for the aldolase reaction. Serine in its turn is converted to tyrosine by tyrosine phenol lyase.  相似文献   

3.
An enzyme has been partially purified from Klebsiella aerogenes which transfers an acetyl group from S-acetyl phosphopantetheine to deacetyl citrate lyase. This converts the deacetyl citrate lyase which has no enzyme activity, to citrate lyase, the active enzyme. A variety of other acetyl thioesters including acetyl CoA did not serve as acetyl donors.  相似文献   

4.
The enzyme 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL), which catalyzes a hydration and two-carbon cleavage step in the degradation of 4-hydroxycinnamic acids, has been purified and characterized from Pseudomonas fluorescens strain AN103. The enzyme is a homodimer and is active with three closely related substrates, 4-coumaroyl-CoA, caffeoyl-CoA, and feruloyl-CoA (Km values: 5.2, 1.6, and 2.4 microM, respectively), but not with cinnamoyl-CoA or with sinapinoyl-CoA. The abundance of the enzyme reflects a low catalytic center activity (2.3 molecules s-1 at 30 degrees C; 4-coumaroyl-CoA as substrate).  相似文献   

5.
Litsea cubeba (Lour.) Pers. is a kind of medicinal plantin China. The first report about the antibacterial and anti-phlogistic function of Litsea cubeba (Lour.) Pers. and itsoil appeared in the Zhong Yao Da Ci Dian [1]. Since 1980s,many studies showed that Litsea cubeba oil had wideantibacterial and antifungal activity [2–4]. The antibioticfunctions of Litsea cubeba oil are attributable mainly tocitral [5–7], which amounts to 60%–80% of the essentialoil [8]. Pattnaik [9] reported that…  相似文献   

6.
Isocitrate lyase was partially purified from germinating spores of the fern Anemia phyllitidis. The enzyme requires Mg2+ and thiol compounds for maximal activity and has a pH optimum between 6.5 and 7.5. The Km of the enzyme for threo-Δs-isocitrate is 0.5 mM. Succinate inhibits the enzyme non-competitively (Ki. 1.8 mM). The increase of isocitrate lyase activity is closely correlated with the induction of the germination process. The fall of enzyme activity during germination is associated with the decline in triglyceride reserves.  相似文献   

7.
A protein exhibiting only enoyl-CoA hydratase (EC 4.2.1.17) activity was purified from an n- alkane-grown yeast, Candida tropicalis. This enzyme had a homotetrameric form composed of subunits with a molecular mass of 36kDa. On the other hand, a bifunctional enzyme exhibiting enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) activities was obtained from the same yeast cells when purified in the presence of protease inhibitors, phenylmethylsulfonyl fluoride, antipain and chymostatin. The enzyme had a molecular mass of 105 kDa and was a monomeric form. Limited proteolysis of the bifunctional enzyme with α-chymotrypsin yielded a peptide mixture containing a 36 kDa fragment, the mixture showing about 76% of the original enoyl-CoA hydratase activity but no 3-hydroxyacyl-CoA dehydrogenase activity. Comparison of the peptide maps of the purified enoyl-CoA hydratase and the 36 kDa fragment obtained from the bifunctional enzyme showed the similarity of these proteins. These results strongly suggest that the domain of enoyl-CoA hydratase is separable from the bifunctional enzyme through the action of a certain protease.  相似文献   

8.
9.
Citral is a component of plant essential oils that possesses several biological activities. It has known medicinal traits, and is used as a food additive and in cosmetics. Citral has been suggested to have potential in weed management, but its precise mode of action at the cellular level is unknown. Here we investigated the immediate response of plant cells to citral at micromolar concentrations. It was found that microtubules of Arabidopsis seedlings were disrupted within minutes after exposure to citral in the gaseous phase, whereas actin filaments remained intact. The effect of citral on plant microtubules was both time‐ and dose‐dependent, and recovery only occurred many hours after a short exposure of several minutes to citral. Citral was also able to disrupt animal microtubules, albeit less efficiently. In addition, polymerization of microtubules in vitro was inhibited in the presence of citral. Taken together, our results suggest that citral is a potent, volatile, anti‐microtubule compound.  相似文献   

10.
Citral, 3,7-dimethyl-2,6-octadienal, is a key component of the essential oils extracted from several lemon-scented herbal plants. Besides its antifungal activity, the anticancer effect of citral was studied in recent years. In this study, we investigated the effect of citral on the acute promyelocytic leukemia cell line NB4. Citral treatment had an antiproliferative effect in NB4 cells via the induction of apoptosis assessed by morphology, proliferation assay, DNA electrophoresis, Annexin V-FITC/PI staining and caspase-3 activation. And citral induced apoptosis of NB4 cells in a dose- and time-dependent manner. In addition, citral treatment induced decreased mitochondrial membrane potential, indicating that citral induced apoptosis via the mitochondrial pathway. Bax up-regulation and Bcl-2 down-regulation on mRNA level and NF-κB down-regulation on protein level was found in this study, suggesting that Bcl-2, Bax and NF-κB may be involved in the mechanism of the apoptotic effect of citral on NB4 cells. These data suggest that citral has a potential therapeutic effect on leukemia.  相似文献   

11.
Fructose diphosphate aldolase (D-fructose-1,6-biphosphate D-glyceraldehyde-3-phosphate lyase, EC 4.1.2.13) from rabbit heart has been purified and obtained in crystalline form. The preparations are homogeneous on the basis of disc gel electrophoresis and ultracentrifugation. The catalytic and the molecular properties indicate that this is aldolase A. A comparison was made between rabbit heart aldolase and the rabbit muscle enzyme. The sedimentation coefficient, energy of activation and Michaelis constant for Fru-1,6-P2 were found to be identical with the values obtained for the muscle enzyme. As in case of the muscle enzyme, heart aldolase was found to have a broad pH optimum, remarkable stability over a wide pH range, and the ability to form a Schiff base intermediate with dihydroxyacetone phosphate upon reduction with borohydride. Cleavage of the methionyl bonds with CNBr yields the same pattern as obtained with the muscle enzyme.  相似文献   

12.
Citrate lyase (EC 4.1.3.6) was purified 38-fold from cell-free extracts of Streptococcus diacetilactis. The enzyme was homogeneous in analytical ultracentrifugation and polyacrylamide gel electrophoresis The final enzyme preparation contained acetate: HS-citrate lyase ligase—an acetylating enzyme which converts inactive HS-citrate lyase into enzymatically active acetyl-S-citrate lyase. This enzyme activity was purified 25-fold over the crude extract and seemed to be associated with citrate lyase. Partially purified citrate lyase from Leuconostoc citrovorum contained also its acetylating enzyme. Purified citrate lyases from Klebsiella aerogenes and Rhodopseudomonas gelatinosa were devoid of acetylating enzyme activity. The HS-form of citrate lyase from S. diacetilactis was completely acetylated and hence activated by incubation with ATP and acetate for 25 min at 25° C. The enzyme did not acetylate the HS-lyases from R. gelatinosa and K. aerogenes. In contrast to the citrate lyases from R. gelatinosa and K. aerogenes the enzymes from S. diacetilactis and L. citrovorum showed onlya very weak reaction inactivation. It is assumed that this is due to the association of the acetylating enzymes with these lyases.  相似文献   

13.
1. Changes in the activities of acetyl-CoA carboxylase (EC 6.4.1.2), phosphofructokinase (EC 2.7.1.11), aldolase (EC 4.1.2.13), extramitochondrial aconitate hydratase (EC 4.2.1.3) and NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42) have been measured in the livers of developing rats from late foetal life to maturity. 2. The effect of altering the weaning time on some enzymes associated with lipogenesis has been studied. Weaning rats at 15 days of age instead of 21 days results in an immediate increase in the activity of ;malic' enzyme (EC 1.1.1.40) whereas the activities of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) and ATP citrate lyase (EC 4.1.3.8) did not increase until 4-5 days and acetyl-CoA carboxylase 2-3 days after early weaning. Weaning rats on to an artificial-milk diet led to complete repression of the rise in activity of hepatic enzymes associated with lipogenesis normally found on weaning, except for ;malic' enzyme, which increased in activity after 20 days of age. 3. The effect of intraperitoneal injections of glucagon, cortisol, growth hormone and thyroxine on the same hepatic enzymes has been investigated. Only thyroxine had any effect on enzyme activities and caused a 20-fold increase in ;malic' enzyme activity and a twofold increase in ATP citrate lyase activity. 4. The activities of hepatic glucose 6-phosphate dehydrogenase and ;malic' enzyme are higher in adult female than in adult male rats and it has been shown that this sex difference in enzyme activities is due to both male and female sex hormones. 5. Hepatic malate, citrate, pyruvate, glucose 6-phosphate and phosphoenolpyruvate concentrations have been measured throughout development. 6. The results are discussed in relation to the dietary and hormonal control of hepatic enzyme activities during development.  相似文献   

14.
The major photoproduct in UV-irradiated spore DNA is the unique thymine dimer 5-thyminyl-5,6-dihydrothymine, commonly referred to as spore photoproduct (SP). An important determinant of the high UV resistance of Bacillus subtilis spores is the accurate in situ reversal of SP during spore germination by the DNA repair enzyme SP lyase. To study the molecular aspects of SP lyase-mediated SP repair, the cloned B. subtilis splB gene was engineered to encode SP lyase with a molecular tag of six histidine residues at its amino terminus. The engineered six-His-tagged SP lyase expressed from the amyE locus restored UV resistance to spores of a UV-sensitive mutant B. subtilis strain carrying a deletion-insertion mutation which removed the entire splAB operon at its natural locus and was shown to repair SP in vivo during spore germination. The engineered SP lyase was purified both from dormant B. subtilis spores and from an Escherichia coli overexpression system by nickel-nitrilotriacetic acid (NTA) agarose affinity chromatography and was shown by Western blotting, UV-visible spectroscopy, and iron and acid-labile sulfide analysis to be a 41-kDa iron-sulfur (Fe-S) protein, consistent with its amino acid sequence homology to the 4Fe-4S clusters in anaerobic ribonucleotide reductases and pyruvate-formate lyases. SP lyase was capable of reversing SP from purified SP-containing DNA in an in vitro reaction either when present in a cell-free extract prepared from dormant spores or after purification on nickel-NTA agarose. SP lyase activity was dependent upon reducing conditions and addition of S-adenosylmethionine as a cofactor.  相似文献   

15.
王刘庆  王多  姜冬梅  姜楠  王蒙 《菌物学报》2020,39(10):1866-1873
互隔交链孢是一种重要的能产生交链孢酚(AOH)等真菌毒素的植物病原菌。精油是重要的抑制病原菌侵染的挥发性植物提取物,其活性组分包括柠檬醛等。本研究表明柠檬醛可高效地抑制互隔交链孢的生长和AOH毒素的产生。柠檬醛熏蒸能够引起互隔交链孢菌丝断裂影响其延伸,而对其分生孢子结构的影响不明显。柠檬醛能够引起互隔交链孢活性氧生成的紊乱,这可能是导致AOH显著下降的原因之一。由于柠檬醛能高效抑制互隔交链孢生长和产毒,因此其可作为传统熏蒸剂的潜在替代品,以防控互隔交链孢引起的病害以及毒素污染。柠檬醛抑制互隔交链孢生长产毒的研究为其开发与应用奠定了良好的基础。  相似文献   

16.
Salt-active acharan sulfate lyase (no EC number) has been purified from Bacteroides stercoris HJ-15, which was isolated from human intestinal bacteria with GAG degrading enzymes. The enzyme was purified to apparent homogeneity by a combination of QAE-cellulose, diethylaminoethyl (DEAE)-cellulose, CM-Sephadex C-50, HA ultrogel and phosphocellulose column chromatography with the final specific activity of 81.33 micro mol x min-1 x mg-1. The purified salt-active acharan sulfate lyase was activated to 5.3-fold by salts (KCl and NaCl). The molecular weight of salt-active acharan sulfate lyase was 94 kDa by SDS/PAGE and gel filtration. The salt-active acharan sulfate lyase showed optimal activity at pH 7.2 and 40 degrees C. Salt-active acharan sulfate lyase activity was potently inhibited by Cu2+, Ni2+ and Zn2+. This enzyme was inhibited by some agents, butanediol and p-chloromercuric sulfonic acid, which modify arginine and cysteine residues. The purified Bacteroidal salt-active acharan sulfate lyase acted to the greatest extent on acharan sulfate, to a lesser extent on heparan sulfate and heparin. The biochemical properties of the purified salt-active acharan sulfate lyase are different from those of the previously purified heparin lyases. However, these findings suggest that the purified salt-active acharan sulfate lyase may belong to heparin lyase II.  相似文献   

17.
An enzyme has been isolated from blue-green algae Oscillatoria sp. which utilizes the product, 13-hydroperoxy-9, 11-octadecadienoic acid (13-HPOD), of lipoxygenase for its substrate. This enzyme, termed hydroperoxide lyase, converts the conjugated diene 13-hydroperoxide of linoleic acid to 13-oxotrideca-9, 11-dienoic acid. The structure of the latter has been determined by ultraviolet spectroscopy and mass spectrometry. 9-HPOD is not a substrate for this enzyme. The hydroperoxide lyase from Oscillatoria sp. has a maximum of activity at pH 6.4 and 30°C. The molecular weight of the enzyme was estimated at 56,000. The enzyme was not inhibited by BW 755C, but was inhibited by molecules containing more than one hydroxyl group. Quercetin was found to be the best inhibitor of the enzyme activity. The purified hydroperoxide lyase from Oscillatoria sp. showed an apparent Km of 7.4 micromolar and a Vmax of 35 nanomoles per minute per milligram of protein for 13-HPOD. An enzymatic pathway for the biogenesis of oxodienoic acid from linoleic acid is proposed. This involves the sequential activity of lipoxygenase and hydroperoxide lyase enzymes.  相似文献   

18.
Evaluation of the antimicrobial activity of citral   总被引:9,自引:0,他引:9  
Citral showed appreciable antimicrobial activity against Gram-positive and Gram-negative bacteria as well as fungi. Media composition and inoculum size had no observable effect on activity but alkaline pH increased citral activity. The growth rates of Escherichia coli cultures were reduced at concentrations of citral ≥0·01% v/v while concentrations ≥0·03% v/v produced rapid reduction in viable cells followed by limited regrowth. In a non-growth medium, 0·08% and 0·1% v/v showed rapid bactericidal effects. Citral may therefore be of preservative use in addition to its other uses in the food, soap and cosmetic industries.  相似文献   

19.
The bacterium Klebsiella aerogenes (type 25) produced an inducible alginate lyase, whose major activity was located intracellularly during all growth phases. The enzyme was purified from the soluble fraction of sonicated cells by ammonium sulfate precipitation, anion- and cation-exchange chromatography and gel filtration. The apparent molecular weight of purified alginate lyase of 28,000 determined by gel filtration and of 31,600 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the active enzyme was composed of a single polypeptide. The alginate lyase displayed a pH optimum around 7.0 and a temperature optimum around 37°C. The purified enzyme depolymerized alginate by a lyase reaction in an endo manner releasing products which reacted in the thiobarbituric acid assay and absorbed strongly in the ultraviolet region at 235 nm. The alginate lyase was specific for guluronic acidrich alginate preparations. Propylene glycol esters of alginate and O-acetylated bacterial alginates were poorly degraded by the lyase compared with unmodified polysaccharide. The guluronate-specific lyase activity was applied in an enzymatic method to detect mannuronan C-5 epimerase in three different mucoid (alginate-synthesizing) strains of Pseudomonas aeruginosa. This enzyme which converts polymannuronate to alginate could not be demonstrated either extracellularly or intracellularly in all strains suggesting the absence of a polymannuronate-modifying enzyme in P. aeruginosa.Abbreviations poly(ManA) (1–4)--D-mannuronan - poly(GulA) (1–4)--L-guluronan - TBA 2-thiobarbituric acid  相似文献   

20.
Long-chain 3-hydroxyacyl-CoA dehydrogenase was extracted from the washed membrane fraction of frozen rat liver mitochondria with buffer containing detergent and then was purified. This enzyme is an oligomer with a molecular mass of 460 kDa and consisted of 4 mol of large polypeptide (79 kDa) and 4 mol of small polypeptides (51 and 49 kDa). The purified enzyme preparation was concluded to be free from the following enzymes based on marked differences in behavior of the enzyme during purification, molecular masses of the native enzyme and subunits, and immunochemical properties: enoyl-CoA hydratase, short-chain 3-hydroxyacyl-CoA dehydrogenase, peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional protein, and mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases. The purified enzyme exhibited activities toward enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase together with the long-chain 3-hydroxyacyl-CoA dehydrogenase activity. The carbon chain length specificities of these three activities of this enzyme differed from those of the other enzymes. Therefore, it is concluded that this enzyme is not long-chain 3-hydroxyacyl-CoA dehydrogenase; rather, it is enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号