首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of PIP2 in pancreatic beta cell function was examined here using the beta cell line MIN6B1. Blocking PIP2 with PH-PLC-GFP or PIP5KIγ RNAi did not impact on glucose-stimulated secretion although susceptibility to apoptosis was increased. Over-expression of PIP5KIγ improved cell survival and inhibited secretion with accumulation of endocytic vacuoles containing F-actin, PIP2, transferrin receptor, caveolin 1, Arf6 and the insulin granule membrane protein phogrin but not insulin. Expression of constitutively active Arf6 Q67L also resulted in vacuole formation and inhibition of secretion, which was reversed by PH-PLC-GFP co-expression. PIP2 co-localized with gelsolin and F-actin, and gelsolin co-expression partially reversed the secretory defect of PIP5KIγ-over-expressing cells. RhoA/ROCK inhibition increased actin depolymerization and secretion, which was prevented by over-expressing PIP5KIγ, while blocking PIP2 reduced constitutively active RhoA V14-induced F-actin polymerization. In conclusion, although PIP2 plays a pro-survival role in MIN6B1 cells, excessive PIP2 production because of PIP5KIγ over-expression inhibits secretion because of both a defective Arf6/PIP5KIγ-dependent endocytic recycling of secretory membrane and secretory membrane components such as phogrin and the RhoA/ROCK/PIP5KIγ-dependent perturbation of F-actin cytoskeleton remodelling.  相似文献   

2.
Heat stress induces an array of physiological adjustments that facilitate continued homeostasis and survival during periods of elevated temperatures. Here, we report that within minutes of a sudden temperature increase, plants deploy specific phospholipids to specific intracellular locations: phospholipase D (PLD) and a phosphatidylinositolphosphate kinase (PIPK) are activated, and phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP2) rapidly accumulate, with the heat-induced PIP2 localized to the plasma membrane, nuclear envelope, nucleolus and punctate cytoplasmic structures. Increases in the steady-state levels of PA and PIP2 occur within several minutes of temperature increases from ambient levels of 20–25°C to 35°C and above. Similar patterns were observed in heat-stressed Arabidopsis seedlings and rice leaves. The PA that accumulates in response to temperature increases results in large part from the activation of PLD rather than the sequential action of phospholipase C and diacylglycerol kinase, the alternative pathway used to produce this lipid. Pulse-labelling analysis revealed that the PIP2 response is due to the activation of a PIPK rather than inhibition of a lipase or a PIP2 phosphatase. Inhibitor experiments suggest that the PIP2 response requires signalling through a G-protein, as aluminium fluoride blocks heat-induced PIP2 increases. These results are discussed in the context of the diverse cellular roles played by PIP2 and PA, including regulation of ion channels and the cytoskeleton.  相似文献   

3.
Phospholipase C (PLC) has been suggested to have a role in signal perception by Nod factors (NFs) in legume root hair cells. For instance, mastoparan, a well-described agonist of heterotrimeric G protein, induces nodulin expression after NFs treatment or Rhizobium inoculation. Furthermore, it has been recently demonstrated that mastoparan also mimics calcium oscillations induced by NFs, suggesting that PLC could play a key role during the nodulation process. In this study, we elucidate a biochemical relationship between PLC and heterotrimeric G proteins during NFs signaling in legumes. In particular, the effect of NFs on in vitro PLC activity from nodule membrane fractions in the presence of guanosine 5'-[γ-thio]triphosphate (GTPγS) and mastoparan was assayed. Our results indicate that for phosphatidylinositol 4,5 bisphosphate (PIP2)-PLC, there is a specific activity of 20–27 nmol mg−1 min−1 in membrane fractions of nodules 18–20 days after inoculation with Rhizobium tropici . Interestingly, in the presence of 5 μ M mastoparan, PIP2-PLC activity was almost double the basal level. In contrast, PIP2-PLC activity was downregulated by 1–10 μ M GTPγS. Also, PLC activity was decreased by up to 64% in the presence of increasing concentrations of NFs (10−8 to 10−5  M ). NFs are critical signaling molecules in rhizobia/legume symbiosis that can activate many of the plant's early responses during nodule development. Calcium spiking, kinases, PLC activity and possibly G proteins appear to be components downstream of the NFs perception pathway. Our results suggest the occurrence of a dual signaling pathway that could involve both G proteins and PLC in Phaseolus vulgaris during the development of root nodules.  相似文献   

4.
5.
6.
Abstract: Torpedo electric organ synaptosomes possess a typical vacuolar H+-ATPase (V-ATPase), inhibited by concanamycin A and insensitive to vanadate, made of the association of a catalytic soluble sector V1 to a membrane domain V0. In the electric nerves, the 57-kDa subunit B of the V1 sector was transported to the nerve endings by the slow axonal flow and did not accumulate upstream from an axonal block. In contrast, a 500% accumulation of the 15-kDa subunit c of the V0 membrane domain was observed, demonstrating that this subunit is conveyed by the fast axonal anterograde transport. After velocity sedimentation of solubilized nerve proteins, the 57- and 15-kDa subunits were recovered in different complexes corresponding, respectively, to the V1 and V0 domains. No fully assembled V-ATPase was detected. It is concluded that V1 and V0 domains of V-ATPase are transported separately in axons, at different rates, and that they only associate once arrived in nerve endings to form the active V-ATPase.  相似文献   

7.
Abstract: In the present study the effects of repeated administration of reserpine on striatal dopamine receptor and guanine nucleotide binding protein mRNAs were determined. Twenty-four hours after seven consecutive daily injections of reserpine—a treatment that is known to produce functional sensitization of D1 and D2 dopamine receptors—the level of striatal D1 dopamine receptor mRNA was unchanged. However, the level of mRNA for the G protein Gsα was increased by 127%. After extended reserpine treatment for 14 days, levels of both striatal D1 DA receptor and Gsα mRNAs were elevated by 99 and 78%, respectively. Seven days of reserpine treatment also increased levels of mRNA of the striatal D2 dopamine receptor and of G proteins Gi2α and Goα by 200, 79, and 32%, respectively. After 14 days of reserpine treatment the level of striatal D2 dopamine receptor mRNA was increased by twofold. In contrast, levels of the mRNAs coding for the G proteins Gi2α and Goα were unchanged. These data suggest that dopamine receptors and their respective G proteins play important roles in the development of sensitization of striatal dopamine receptors during repeated reserpine treatment. Furthermore, the persistent increase in level of striatal Gsα mRNA suggests that this G protein is necessary to maintain supersensitivity of the striatal D1 dopamine receptor system following long-term dopamine depletion.  相似文献   

8.
Testis brain RNA-binding protein (TB-RBP) is a sequence-dependent RNA-binding protein that binds to conserved Y and H sequence elements present in many brain and testis mRNAs. Using recombinant TB-RBP and a highly enriched tubulin fraction, we demonstrate here that recombinant TB-RBP binds to microtubules assembled in vitro. The interaction between recombinant TB-RBP and microtubules was inhibited by high salt and by the microtubule disassembling agents colcemid and calcium, but not by the microfilament-disassembling agent cytochalasin D. Confocal microscopy confirmed colocalization of TB-RBP and tubulin in the cytoplasm of male germ cells. An affinity-purified antibody prepared against recombinant TB-RBP specifically precipitated mRNAs encoding myelin basic protein and alpha calmodulin-dependent kinase II-two transported mRNAs, and protamines 1 and 2-two translationally regulated testicular mRNAs. These data indicate an intracellular association between TB-RBP and specific target mRNAs and suggest an involvement of TB-RBP in microtubule-dependent mRNA transport in the cytoplasm of cells.  相似文献   

9.
Abstract: Bradykinin receptors have been subdivided into at least two major pharmacological subtypes, B1 and B2. The cDNAs encoding functional B2 receptors have recently been cloned, but no molecular information exists at present on the B1 receptor. In this article, we describe experiments examining the possible relationship between the mRNAs encoding the B1 and B2 types of receptor. We showed previously that the Human fibroblast cell line W138 expresses both B1 and B2 receptors. In this report, we describe oocyte expression experiments showing that the B1 receptor in W138 human fibroblast cells is encoded by a distinct mRNA ∼2 kb shorter than that encoding the B2 receptor. We have used an antisense approach in conjunction with the oocyte expression system to demonstrate that the two messages differ in sequence at several locations throughout the length of the B2 sequence. Taken together with the mixed pharmacology exhibited in some expression systems by the cloned mouse receptor, the data indicate that B1-type pharmacology may arise from two independent molecular mechanisms.  相似文献   

10.
Abstract: To examine the role of the C terminal tail in H2 receptor regulation, three cDNAs, encoding truncated histamine H2 receptor mutants (H2T295, H2T307, and H2T341), were constructed and stably transfected in Chinese hamster ovary (CHO) cells. The amino acids before position 307 appear to be necessary for proper receptor transport or folding, as no detectable H2 receptor binding of the H2T295 was observed after transfection. Truncation of the C terminal tail by 51 amino acids (H2T307) did not affect the binding properties of H2 antagonists and histamine or histamine-induced signaling. Yet, removal of 17 amino acids generated a mutant receptor (H2T341), which was able to form a ternary complex but was unable to fully activate the Gs protein on histamine exposure. Agonist-induced but not the cyclic AMP-dependent H2 receptor down-regulation was more profound for the H2T307 receptor, indicating that different structural elements of the H2 receptor protein are involved in the cyclic AMP-dependent and independent pathways of H2 receptor down-regulation. Taken together, in this study we identified regions in the C terminal tail of the H2 receptor that act as positive and/or negative signals in H2 receptor signaling and down-regulation.  相似文献   

11.
Botulism is mainly acquired by the oral route, and botulinum neurotoxin (BoNT) escapes the gastrointestinal tract by crossing the digestive epithelial barrier prior to gaining access to the nerve endings. Here, we show that biologically active BoNT/A crosses intestinal cell monolayers via a receptor-mediated transcytosis, including a transport inhibition at 4°C and a passage at 37°C in a saturable manner within 30–60 min. BoNT/A passage rate was about 10-fold more efficient through the intestinal crypt cell line m-ICcl2, than through the carcinoma Caco-2 or T84 cells, and was not increased when BoNT/A was associated with the non-toxic proteins (botulinum complex). Like for neuronal cells, BoNT/A binding to intestinal cells was mediated by the half C-terminal domain as tested by fluorescence-activated cytometry and by transcytosis competition assay. A 'double receptor model' has been proposed in which BoNT/A interacts with gangliosides of GD1b and GT1b series as well as SV2 protein. Gangliosides of GD1b and GT1b series and recombinant intravesicular SV2-C domain partially impaired BoNT/A transcytosis, suggesting a putative role of gangliosides and SV2 or a related protein in BoNT/A transcytosis through Caco-2 and m-ICcl2 cells.  相似文献   

12.
We have isolated cDNA clones encoding the human RD protein, which is closely related to several known nuclear RNA-binding proteins. The RD protein contains a 60-amino acid (aa) tract almost entirely of alternating basic and acidic aa, (RD)n, primarily arginine (Arg; R) and aspartic acid (Asp; D). The protein also contains an ‘RNP sequence domain’. Arg-rich tracts and the RNP sequence domain are both features of nuclear RNA-binding proteins. However, we have been unable to detect RNA-binding by the human RD protein. The very strong evolutionary conservation of the mammalian RD protein as sequence suggests that it plays an important role in the cell.  相似文献   

13.
The cold-induced wheat WCSP1 protein belongs to the cold shock domain (CSD) protein family. In prokaryotes and eukaryotes, the CSD functions as a nucleic acid-binding domain. Here, we demonstrated that purified recombinant WCSP1 is boiling soluble and binds ss/dsDNA and mRNA. Furthermore, boiled-WCSP1 retained its characteristic nucleic acid-binding activity. A WCSP1 deletion mutant, containing only a CSD, lost ssDNA/RNA-binding activity; while a mutant containing the CSD and the first glycine-rich region (GR) displayed the activity. These data indicated that the first GR of WCSP1 is necessary for the binding activity but is not for the heat stability of the protein.  相似文献   

14.
15.
RNase II is a single-stranded-specific 3'-exoribonuclease that degrades RNA generating 5'-mononucleotides. This enzyme is the prototype of an ubiquitous family of enzymes that are crucial in RNA metabolism and share a similar domain organization. By sequence prediction, three different domains have been assigned to the Escherichia coli RNase II: two RNA-binding domains at each end of the protein (CSD and S1), and a central RNB catalytic domain. In this work we have performed a functional characterization of these domains in order to address their role in the activity of RNase II. We have constructed a large set of RNase II truncated proteins and compared them to the wild-type regarding their exoribonucleolytic activity and RNA-binding ability. The dissociation constants were determined using different single- or double-stranded substrates. The results obtained revealed that S1 is the most important domain in the establishment of stable RNA-protein complexes, and its elimination results in a drastic reduction on RNA-binding ability. In addition, we also demonstrate that the N-terminal CSD plays a very specific role in RNase II, preventing a tight binding of the enzyme to single-stranded poly(A) chains. Moreover, the biochemical results obtained with RNB mutant that lacks both putative RNA-binding domains, revealed the presence of an additional region involved in RNA binding. Such region, was identified by sequence analysis and secondary structure prediction as a third putative RNA-binding domain located at the N-terminal part of RNB catalytic domain.  相似文献   

16.
17.
Abstract: The myelin P2 protein, a 14,800-Da cytosolic protein found primarily in peripheral nerves, belongs to a family of fatty acid binding proteins. Although it is similar in amino acid sequence and tertiary structure to fatty acid binding proteins found in the liver, adipocytes, and intestine, its expression is limited to the nervous system. It is detected only in myelin-producing cells of the central and peripheral nervous systems, i.e., the oligodendrocytes and Schwann cells, respectively. As part of a program to understand the regulation of expression of this gene, to determine its function in myelin-producing cells, and to study its role in peripheral nerve disease, we have isolated and characterized overlapping human genomic clones encoding the P2 protein. We report here on the partial structure of this gene, and on its localization within the genome. By using a panel of human-hamster somatic cell hybrids and by in situ hybridization, we have mapped the human P2 gene to segment q21 on the long arm of chromosome 8. This result identifies the myelin P2 gene as a candidate gene for autosomal recessive Charcot-Marie-Tooth disease type 4A.  相似文献   

18.
Abstract Protein kinase C (PKC) appears to have a central role in the O2 response of neutrophils following stimulation of membrane receptors. The second messenger, diacylglycerol (DG), that activates PKC is derived from membrane phospholipids via activation of phosphatidylinositol 4,5-bisphosphate (PIP2)-phospholipase C (PLC) and phospholipase D (PLD), with the latter pathway being more prominent in primed cells. In resting cells receptor coupling of PLD is through a G-protein. Priming brings a cytoplasmic tyrosine kinase into the transducer sequence which, through protein phosphorylation, increases the efficiency of coupling between membrane receptors and PLD. Phosphatidic acid (PA), the initial product of the PLD pathway, also appears to act as a second messenger by directly activating the NADPH oxidase responsible for generating O2. Interconversion of PA and DG by phosphatidate phosphohydrolase and DG kinase determines which of these second messengers has the dominant role.  相似文献   

19.
Neisseria gonorrhoeae ( Ngo ) expressing the outer membrane protein OpaHSPG can adhere to and invade epithelial cells via binding to heparan sulphate proteoglycan (HSPG) receptors. In this study, we have investigated the role of syndecan-1 and syndecan-4, two members of the HSPG family, in the uptake of Ngo by epithelial cells. When overexpressed in HeLa cells, both syndecans co-localize with adherent Ngo on the host cell surface. This overexpression of syndecan-1 and syndecan-4 leads to a three- and sevenfold increase in Ngo invasion respectively. In contrast, transfection with the syndecan-1 and syndecan-4 mutant constructs lacking the intracellular domain results in an abrogation of the invasion process, characteristic of a dominant-negative mode of action. A concomitant loss of the capacity to mediate Ngo uptake was also observed with syndecan-4 mutant constructs carrying lesions in the dimerization motif necessary for the binding of protein kinase C (PKC) and phosphatidylinositol 4,5-bisphosphate (PIP2), and mutants that are deficient in a C-terminal EFYA amino acid motif responsible for binding to syntenin or CASK. We conclude that syndecan-1 and syndecan-4 can both mediate Ngo uptake into epithelial cells, and that their intracellular domains play a crucial role in this process, perhaps by mediating signal transduction or anchorage to the cytoskeleton.  相似文献   

20.
A hypertonic mannitol shock enhanced K+ uptake by Beta vulgaris L. (cv. early flat Egyptian) storage tissue slices and also increased the inositol 1,4,5-trisphosphate [Ins(1,4,5)P3) content of the slices as well as of Sorghum bicolor L. (cv. Hazera) and Vigna radiata L. (cv. unknown) roots. K+ uptake by B. vulgaris slices could be enhanced, in the absence of mannitol, by application of effectors that mimic products of the phosphatidylinositol 4,5-bisphosphate (PIP2) turnover cycle. Maximal Ins (1,4,5)P3 content was found 10 min after hypertonic induction and maximal K+ uptake was obtained 10 min later. The hypertonic mannitol shock, administered to intact B. vulgaris slices, also enhanced the phosphorylation of a 39 kDa protein in the plasmalemma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号