首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cellular redox state has been shown to play an essential role in cellular signaling systems. Here we investigate the effects of reductants and H2O2 on the signaling of epidermal growth factor (EGF) in cells. H2O2 induced the phosphorylation of the EGF receptor and the formation of a receptor complex comprising Shc, Grb2, Sos, and the EGF receptor. Dimerization or oligomerization of the EGF receptor was not induced by H2O2. Protein tyrosine phosphatase (PTP) assay showed that H2O2 suppressed dephosphorylation of the EGF receptor in cell lysates, suggesting that inactivation of PTP was involved in H2O2-induced activation of the EGF receptor. In contrast, the reductants N-acetyl-L-cysteine [Cys(Ac)] and dithiothreitol markedly suppressed EGF-induced dimerization and activation of the EGF receptor in cells. In accordance with suppression of the EGF receptor, Cys(Ac) suppressed EGF-induced activation of Ras, phosphatidylinositol 3-kinase and mitogen-activated protein kinase. Dithiothreitol completely inhibited EGF binding and kinase activation of the EGF receptor both in vitro and in vivo. In contrast, Cys(Ac) suppressed high-affinity EGF-binding sites on the cells, but had no effect on low-affinity binding sites. Furthermore, Cys(Ac) did not suppress EGF-induced kinase activation or dimerization of the EGF receptor in vitro, indicating that it suppressed the EGF receptor through a redox-sensitive cellular process or processes. Thus, the EGF receptor is regulated by redox through multiple steps including dephosphorylation by PTP, ligand binding, and a Cys(Ac)-sensitive cellular process or processes.  相似文献   

2.
Hepatocyte growth factor (HGF), a humoral mediator for regeneration of liver and kidney, possesses multiple biological activities. To investigate target cell specificity and to examine whether multiple actions of HGF are related to properties of the HGF receptor on target cells, we examined the effects of HGF on cell growth and motility and analyzed the HGF receptor in various species of cells. HGF stimulated growth and DNA synthesis of PAM212 (naturally immortalized mouse keratinocytes), Mv1Lu (mink lung epithelia), and A431 (human epidermoid carcinoma) cells, as well as mature hepatocytes, but inhibited those of IM-9 (human B-lymphoblasts). Conversely, HGF had a marked stimulatory effect on cell motility of MDCK (Mardin-Darby canine kidney epithelia) cells, but not on their growth. Also, HGF enhanced the motility of various species of cells, including A431, PAM212, HepG2 (human hepatoma), KB (human epidermoid carcinoma), and J-111 (human monocytes) cells. Scatchard analysis of 125I-HGF binding to hepatocytes indicated that the cells expressed both high- and low-affinity binding sites for HGF with Kd values of 23 and 260 pM, respectively. High-affinity HGF receptor with Kd values of 20-25 pM was detected at 40-720 sites/cell in MDCK, A431, PAM212, Lu99, and IM-9 cells, but not in fibroblasts and hematopoietic cells. In contrast, low-affinity binding sites were detected in all cell lines examined, even in those not responsive to HGF. Northern blots revealed that cells possessing a high-affinity HGF receptor expressed c-MET/HGF receptor mRNA. Therefore, HGF probably regulates both cell growth and motility of various types of epithelial cells and some types of mesenchymal cells. The multiple biological activities of HGF may be exerted through a high-affinity HGF receptor linked to multiple distinct intracellular signaling pathways.  相似文献   

3.
Rat liver and brain alpha 1-adrenergic receptors were purified 500 fold by successive chromatographic steps using heparin- and wheat germ agglutinin-agarose; an affinity matrix constructed by coupling CP85.224 (a derivative of prazosin) to affigel 102. It is shown that the existence in brain of an alpha 1-adrenergic receptor subpopulation, which is structurally distinct from that previously characterized. Chlorethylclonidine, irreversibly inactivates [3H] prazosin binding sites in partially purified membrane preparations of rat liver. Under identical conditions, only 50% of receptors are irreversibly inactivated. Computer modelling of data obtained from the competition by the alpha-antagonists, WB 4101 and phentolamine, for [3H] prazosin binding to partially purified preparations of rat liver is best fit by assuming a single low-affinity site for both ligands. However, the partially purified brain preparations indicates the presence of two affinity binding sites for these antagonists. Prior alkylation of brain receptors with chlorethylclonydyne results in the loss of the low-affinity phentolamine and WB4101 binding sites. These data provide evidence for the existence of a single receptor subpopulation (alpha 1b) in rat liver and for two subpopulations (alpha 1a and alpha 1b) in rat brain. The significance of these results in understanding the signal mechanisms which allow cellular responsiveness to alpha 1-adrenergic receptor agonists is discussed.  相似文献   

4.
Characterization of the extracellular protein interactome has lagged far behind that of intracellular proteins, where mass spectrometry and yeast two-hybrid technologies have excelled. Improved methods for identifying receptor-ligand and extracellular matrix protein interactions will greatly accelerate biological discovery in cell signaling and cellular communication. These technologies must be able to identify low-affinity binding events that are often observed between membrane-bound coreceptor molecules during cell-cell or cell-extracellular matrix contact. Here we demonstrate that functional protein microarrays are particularly well-suited for high-throughput screening of extracellular protein interactions. To evaluate the performance of the platform, we screened a set of 89 immunoglobulin (Ig)-type receptors against a highly diverse extracellular protein microarray with 686 genes represented. To enhance detection of low-affinity interactions, we developed a rapid method to assemble bait Fc fusion proteins into multivalent complexes using protein A microbeads. Based on these screens, we developed a statistical methodology for hit calling and identification of nonspecific interactions on protein microarrays. We found that the Ig receptor interactions identified using our methodology are highly specific and display minimal off-target binding, resulting in a 70% true-positive to false-positive hit ratio. We anticipate that these methods will be useful for a wide variety of functional protein microarray users.  相似文献   

5.
A new series of 3,3-disubstituted-5-aryloxindoles has been synthesized and evaluated for progesterone receptor antagonist (PR) activity in a T47D cell alkaline phosphatase assay and for their ability to bind PR in competition binding studies. In this communication, the synthesis and structure-activity relationships (SARs) of various 3,3-substituents are discussed where it is clear that small alkyl and spiroalkyl groups are required to achieve better PR antagonist activity.  相似文献   

6.
Oncostatin M binds the high-affinity leukemia inhibitory factor receptor.   总被引:12,自引:0,他引:12  
Oncostatin M (OSM) is a glycoprotein cytokine that was recently demonstrated to be structurally and functionally related to the leukemia inhibitory factor (LIF). We have investigated the binding of each cytokine to a variety of cellular receptors including those on solid tumor lines, leukemic cells, endothelial cells, macrophages, and cells transfected with the recently cloned low-affinity LIF receptor, and to a soluble form of the LIF receptor. LIF is incapable of binding either high- or low-affinity OSM receptors, yet OSM is capable of binding the high-affinity but not the low-affinity LIF receptor. Since the presence of high-affinity LIF receptors correlates with the biological activity of LIF on a wide range of target cells, we predict that OSM should have similar effects on LIF-responsive cells.  相似文献   

7.
This paper describes a simple and rapid procedure for the estimation of specific parameters (dissociation constants, Kd and maximum binding capacities, Bmax) of ligand binding to two receptor subpopulations. This procedure provides, in a few minutes, the investigator, performing the actual binding studies, the necessary information about receptor heterogeneity, enabling the investigator to plan further experiments. The procedure is based on the graphical comparison of experimental binding data (ligand binding to one or two receptor subpopulations) with the theoretical values of ligand binding to one receptor population at four levels). The values of Kd and Bmax for high- and low-affinity receptors are derived from 4 horizontal deviations of experimental data from a theoretical data plot at these levels by their comparison with tabulated deviations. The correctness of the estimated parameters can be confirmed by the comparison of experimental data with those simulated on the basis of applying the values of Kd and Bmax found in the formula for ligand binding to two receptor subpopulations. The practical applicability of this procedure was demonstrated both on simulated and experimental data, and confirmed by the well known computer programs for evaluating receptor heterogeneity, namely "LIGAND" and "Affinity spectra".  相似文献   

8.
Radioligand binding studies have shown that AMPA receptors exist in two variants that differ about twenty-fold in their binding affinities, with brain receptors being mainly of the low-affinity type and recombinantly expressed receptors having almost exclusively high affinity. However, the physiological correlate of high- and low-affinity binding is not yet known. In this study we examined if physiological experiments similarly reveal evidence for two distinct receptor variants. We therefore measured equilibrium desensitization by glutamate and determined IC(50) values for neuronal receptors and for the homomeric receptors GluR1-4 expressed in HEK293 cells. Contrary to the prediction that these IC(50) values exhibit large differences commensurate with those of high- and low-affinity binding, values for homomeric receptors (1-18 microM) were on an average not different from those of neuronal receptors (3-10 microM). Moreover, simulations with kinetic receptor models suggest that the IC(50) values for neuronal and recombinant receptors correspond to the binding affinity of the low-affinity receptor variant. These findings indicate that the high-affinity binding measured in heterologous expression systems represents an immature receptor variant that does not contribute to the currents recorded from these cells, and that the functional low-affinity receptors are present in such small number that they are effectively masked in binding assays by the high-affinity receptors. Thus, in order to compare experimentally determined saturation binding profiles with those predicted by kinetic receptor models and with dose-response curves from physiological studies, it will be imperative to develop methods for isolating first the low-affinity receptors.  相似文献   

9.
The effects of chronic administration of interferon (IFN; recombinant human IFN -A/D) on serotonergic binding sites in rat brain were investigated. IFN was injected daily for 2 weeks at a dose of 100000 I.U./kg, (i.p.) in male Wistar rats. IFN did not alter either [3H]ketanserin binding to 5-HT2A receptors or [3H]paroxetine binding to 5-HT transporters. Scatchard analysis of [3H]8-hydroxy-dipropylaminotetraline (8-OH-DPAT) binding to 5-HT1A receptors demonstrated the presence of high- and low-affinity binding sites in both treatment and control groups. IFN significantly increased both Kd and Bmax measures of [3H]8-OH-DPAT binding at low-affinity binding sites, but not at the high-affinity sites. These results suggest that IFN affects the low-affinity 5-HT1A receptors sites and may be involved in the development of IFN-induced psychiatric disturbances.  相似文献   

10.
Different mammalian secreted phospholipases A(2) (sPLA(2) s) are expressed in male reproductive organs and/or in sperm cells but their cellular functions are still not fully characterized. Because several reports indicate a link between cellular lipids and sperm motility, we have investigated the effect of mouse group IIA, IID, IIE, V, and X sPLA(2) s on sperm motility. Among these enzymes, only mouse group X sPLA(2) (mGX sPLA(2) ) acts as a potent inhibitor of sperm motility that decreases track speed (VCL) and lateral displacement of the head (ALH) of both noncapacitated and capacitated sperm. The inhibitory effect of mGX sPLA(2) is dependent on its enzymatic activity because (i) both the proenzyme form of mGX sPLA(2) (pro-mGX) and the H48Q mutant of mGX sPLA(2) have very weak enzymatic activity and are unable to modulate sperm motility and (ii) LY329722, a specific inhibitor of sPLA(2) s, blocks the inhibitory effect of mGX sPLA(2) . Moreover, mGX sPLA(2) exerts a gradual potency on sperm subpopulations with different velocities, an effect which may be linked to the heterogeneity of lipid composition in these sperm subpopulations. Finally, we found that endogenous mGX sPLA(2) released during spontaneous acrosome reaction modulates sperm motility of capacitated sperm. Together, our results suggest a new role of sPLA(2) in sperm physiology where the sPLA2 selects a sperm subpopulation for fertilization based on its effect on sperm motility.  相似文献   

11.
3,4-Dihydroxyphenylethylamine (dopamine) D2 receptors, solubilized from bovine striatal membranes using a cholic acid-NaCl combination, exhibited the typical pharmacological characteristics of both agonist and antagonist binding. The rank order potency of the agonists and antagonists to displace [3H]spiroperidol binding was the same as that observed with membrane-bound receptors. Computer-assisted analysis of the [3H]spiroperidol/agonist competition curves revealed the retention of high- and low-affinity states of the D2 receptor in the solubilized preparations and the proportions of receptor subpopulations in the two affinity states were similar to those reported in membrane. Guanine nucleotide almost completely converted the high-affinity sites to low-affinity sites for the agonists. The binding of the high-affinity agonist [3H]N-n-propylnorapomorphine ([3H]NPA) was clearly demonstrated in the solubilized preparations for the first time. Addition of guanylyl-imidodiphosphate completely abolished the [3H]NPA binding. When the solubilized receptors were subjected to diethylaminoethyl-Sephacel chromatography, the dopaminergic binding sites eluted in two distinct peaks, showing six- to sevenfold purification of the receptors in the major peak. Binding studies performed on both peaks indicated that the receptor subpopulation present in the first peak may have a larger proportion of high-affinity binding sites than the second peak. The solubilized preparation also showed high-affinity binding of [35S]guanosine-5'-(gamma-thio)triphosphate, a result suggesting the presence of guanine nucleotide binding sites, which may interact with the solubilized D2 receptors. These data are consistent with the retention of the D2 receptor-guanine nucleotide regulatory protein complex in the solubilized preparations and should provide a suitable model system to study the receptor-effector interactions.  相似文献   

12.
Functional domains on the recombinant interferon-alpha 2 (rIFN-alpha 2) molecule, which are involved in antiviral and NK enhancing activities, have been defined by immunochemical mapping with MAb, and their relationship with the IFN cellular receptor binding site has been studied. With 20 different anti-IFN-alpha 2 MAb selected by their binding to 125I-labeled IFN and by immunoprecipitation of the 20 Kd IFN molecule, we have defined three spatially separated epitopes (designated as sites A, B, and C) and two partially overlapping antigenic determinants on the IFN-alpha 2 molecule. Functional relation of IFN-alpha 2 A, B, and C epitopes have been determined by assaying the effect of various anti-IFN MAb on IFN-mediated biologic activities. MAb directed to sites A and B neutralized the antiviral activity of IFN. Furthermore, the MAb specific for site B displayed a neutralizing potency threefold higher than MAb directed to site A. Site B was also involved in the enhancing activity of IFN on NK-mediated cell cytotoxicity, whereas site A was not. MAb directed to site C partially affected the IFN-boosted NK activity but did not neutralize the IFN antiviral activity. Inhibition studies of 125I-IFN binding to human U-937 myelomonocytic cells by anti-IFN MAb demonstrated that MAb directed to site B blocked different IFN biologic functions by preventing its binding to the cellular receptor, whereas MAb directed to sites A and C caused no inhibition and partial inhibition of this binding, respectively.  相似文献   

13.
A method for analyzing ligand–receptor binding kinetics is described, which is based on an engineered FC domain (FChk) that forms a covalent heterodimer. To validate the system, the type I IFN receptors (IFNAR1 and IFNAR2) were expressed as IFNAR1‐FChk, IFNAR2‐FCkh, and IFNAR1/IFNAR2‐FChk fusion proteins. Surface plasmon resonance (SPR) analysis of binary IFNα2a/IFNAR interactions confirmed prior affinity measurements, while the affinity of the IFNα2a/IFNAR1/IFNAR2‐FChk interaction reproduced the affinity of IFNα2a binding to living cells. In cellular assays, IFNAR1/IFNAR2‐FChk potently neutralized IFNα2a bioactivity with an inhibitory concentration equivalent to the KD measured by SPR. These studies suggest that FChk provides a simple reagent to evaluate the binding kinetics of multiple ligand–receptor signaling systems that control cell growth, development, and immunity.  相似文献   

14.
The present study was performed on retinas of chick embryos receiving at day 8 of incubation an intracerebral injection of 0.02 microgram of corticosterone. We had previously shown with the use of [3H]quinuclidinylbenzilate [( 3H]QNB) that such treatment induced the appearance of two muscarinic binding sites in the treated retinas, whereas only one was detectable in the controls. In the present study we investigated muscarinic cholinergic receptor subclasses with agonist and antagonist binding. Agonist binding was studied by varying the concentrations of carbachol and acetylcholine (10(-9) M-10(-5) M) in the presence of a constant concentration (0.2 nM) of [3H]QNB. Two subpopulations of receptors were revealed, a high- and a low-affinity receptor, in both treated and control retinas. However, in the hormone-treated retinas, the two subpopulations significantly differed from the controls in their affinity and in their relative percentage among the total receptor population. Moreover, using pirenzepine, an antagonist known to have the capacity to distinguish between muscarinic cholinergic subclasses, two receptor subpopulations were found to be present in the hormone-treated retinas but a single one in the controls. It is suggested that hormone treatment can either induce the appearance of a new subclass of muscarinic cholinergic receptors or favor the maturation of a population of retinal cells having these receptors. Pirenzepine binding in retinas from intact embryos of 7, 9, and 11 days of incubation revealed one receptor subpopulation. Thus, these findings are more consistent with the hypothesis that corticosterone effects the target cells, either inducing changes in muscarinic receptor and/or modifying the receptor environment.  相似文献   

15.
M Gullberg 《The EMBO journal》1986,5(9):2171-2178
Activated T cells express at least two distinct affinity classes of interleukin-2 (IL-2) receptors. The number of low-affinity receptors per cell is normally 10-30 times greater than that of the high-affinity receptors, and the difference in the dissociation constant between the two classes of receptors is in the order of 1,000-fold. In this report normal human T cells are used in a cellular system in which the number of low-affinity receptors can be manipulated. It is demonstrated that a cell population could be achieved with such low levels of low-affinity IL-2 receptors that almost half of the surface pool of anti-IL-2 receptor antibody (anti-Tac) binding sites represented high-affinity receptors. By using this cellular system it was possible to show that anti-Tac recognizes both receptor classes with similar affinity and that IL-2 inhibits Tac binding to both receptor classes in a competitive fashion. Tac antigens were purified from surface 125I-labeled cells expressing high levels of high-affinity IL-2 receptors, but low levels of the low-affinity receptor class, and this preparation was compared with another pool of Tac antigens obtained from cells expressing the normal 10- to 20-fold excess of low-affinity IL-2 binding sites over high-affinity IL-2 receptors. Biochemical characterization by peptide mapping by limited proteolysis and two-dimensional gel analysis revealed that these distinct preparations of Tac antigens were indistinguishable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Cell surface receptors transduce signals, required to produce cellular activity, that may be mediated by ligand-induced receptor aggregation. Several receptor systems exhibit both low and high ligand affinities and some models of receptor activation associate receptor clusters with high or low ligand binding affinity. In the present work succinyl concanavalin A, which binds with both high and low affinity to receptors, was studied on 3T3 Swiss mouse fibroblasts, where preaggregation of receptors has been postulated. Scanning fluorescence correlation spectroscopy measurements were used to determine the relationship between the degree of ligand binding and the state of receptor aggregation. Correlation analysis of fluorescence fluctuations across the cell surface reveal that the variance of the fluctuations (quantitated by g[0]) increased when the ligand concentration was varied from 0.33 to 67 mg/L. The g(0) values reached a plateau at concentrations greater than approximately 10 mg/L. These data are incompatible with homogeneous receptor distributions or equal affinity receptor binding but are compatible with a partly aggregated receptor system with high affinity binding to small aggregates, and low affinity binding to large aggregates. Computer simulated scanning fluorescence correlation spectroscopy experiments confirm that background fluorescence from the cell does not account for the experimentally observed effects.  相似文献   

17.
The neurotrophins mediate their effects through binding to two classes of receptors, a tyrosine kinase receptor, member of the Trk family, and the low-affinity neurotrophin receptor, p75LNGFR, of as yet undefined signalling capacity. The need for a two-component receptor system in neurotrophin signalling is still not understood. Using site-directed mutagenesis, we have identified positively charged surfaces in BDNF, NT-3 and NT-4 that mediate binding to p75LNGFR. Arg31 and His33 in NT-3, and Arg34 and Arg36 in NT-4, located in an exposed hairpin loop, were found to be essential for binding to p75LNGFR. In BDNF, however, positively charged residues critical for p75LNGFR binding (Lys95, Lys96 and Arg97) were found in a spatially close but distinct loop region. Models of each neurotrophin were built using the coordinates of NGF. Analysis of their respective electrostatic surface potentials revealed similar clusters of positively charged residues in each neurotrophin but with differences in their precise spatial locations. Disruption of this positively charged interface abolished binding to p75LNGFR but not activation of cognate Trk receptors or biological activity in Trk-expressing fibroblasts. Unexpectedly, loss of low-affinity binding in NT-4, but not in BDNF or NT-3, affected receptor activation and biological activity in neuronal cells co-expressing p75LNGFR and TrkB, suggesting a role for p75LNGFR in regulating biological responsiveness to NT-4. These findings reveal a possible mechanism of ligand discrimination by p75LNGFR and suggest this receptor may selectively modulate the biological actions of specific neurotrophin family members.  相似文献   

18.
The profoundly elevated concentrations of low-density lipoproteins (LDL) present in homozygous familial hypercholesterolemia lead to symptomatic cardiovascular disease and death by early adulthood. Studies conducted in nonhepatic tissues demonstrated defective cellular recognition and metabolism of LDL in these patients. Since mammalian liver removes at least half of the LDL in the circulation, the metabolism of LDL by cultured hepatocytes isolated from familial hypercholesterolemic homozygotes was compared to hepatocytes from normal individuals. Fibroblast studies demonstrated that the familial hypercholesterolemic subjects studied were LDL receptor-negative (less than 1% normal receptor activity) and LDL receptor-defective (18% normal receptor activity). Cholesterol-depleted hepatocytes from normal subjects bound and internalized 125I-labeled LDL (Bmax = 2.2 micrograms LDL/mg cell protein). Preincubation of normal hepatocytes with 200 micrograms/ml LDL reduced binding and internalization by approx. 40%. In contrast, 125I-labeled LDL binding and internalization by receptor-negative familial hypercholesterolemic hepatocytes was unaffected by cholesterol loading and considerably lower than normal. This residual LDL uptake could not be ascribed to fluid phase endocytosis as determined by [14C]sucrose uptake. The residual LDL binding by familial hypercholesterolemia hepatocytes led to a small increase in hepatocyte cholesterol content which was relatively ineffective in reducing hepatocyte 3-hydroxy-3-methylglutaryl-CoA reductase activity. Receptor-defective familial hypercholesterolemia hepatocytes retained some degree of regulatable 125I-labeled LDL uptake, but LDL uptake did not lead to normal hepatocyte cholesterol content or 3-hydroxy-3-methylglutaryl-CoA reductase activity. These combined results indicate that the LDL receptor abnormality present in familial hypercholesterolemia fibroblasts reflects deranged hepatocyte LDL recognition and metabolism. In addition, a low-affinity, nonsaturable uptake process for LDL is present in human liver which does not efficiently modulate hepatocyte cholesterol content or synthesis.  相似文献   

19.
Biological actions of insulin regulate glucose metabolism and other essential physiological functions. Binding of insulin to its cell surface receptor initiates signal transduction pathways that mediate cellular responses. Thus, it is of great interest to understand the mechanisms underlying insulin receptor binding kinetics. Interestingly, negative cooperative interactions are observed at high insulin concentrations while positive cooperativity may be present at low insulin concentrations. Clearly, insulin receptor binding kinetics cannot be simply explained by a classical bimolecular reaction. Mature insulin receptors have a dimeric structure capable of binding two molecules of insulin. The binding affinity of the receptor for the second insulin molecule is significantly lower than for the first bound insulin molecule. In addition, insulin receptor aggregation occurs in response to ligand binding and aggregation may also influence binding kinetics. In this study, we develop a mathematical model for insulin receptor binding kinetics that explicitly represents the divalent nature of the insulin receptor and incorporates receptor aggregation into the kinetic model. Model parameters are based upon published data where available. Computer simulations with our model are capable of reproducing both negative and positive cooperativity at the appropriate insulin concentrations. This model may be a useful tool for helping to understand the mechanisms underlying insulin receptor binding and the coupling of receptor binding to downstream signaling events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号