首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The O-polysaccharide of Providencia stuartii O4 was obtained by mild acid degradation of the lipopolysaccharide, and the following structure of the pentasaccharide repeating unit was established: [structure: see text] where D-Qui4N(L-AspAc) is 4-(N-acetyl-L-aspart-4-yl)amino-4,6-dideoxy-D-glucose, which has not been hitherto found in bacterial polysaccharides. Structural studies were performed using sugar and methylation analyses, Smith degradation and NMR spectroscopy, including conventional 2D 1H,1H COSY, TOCSY, NOESY and 1H,13C HSQC experiments as well as COSY and NOESY experiments run in an H(2)O-D(2)O mixture to reveal correlations for NH protons.  相似文献   

7.
8.
9.
Chung YS  Kim DH  Seo WM  Lee HC  Liou K  Oh TJ  Sohng JK 《Carbohydrate research》2007,342(11):1412-1418
Over-expressed GerB (dTDP-4-keto-6-deoxy-d-glucose aminotransferase) of Streptomyces sp. GERI-155 was used in the enzymatic synthesis of dTDP-4-amino-4,6-dideoxy-D-glucose (2) from dTDP-4-keto-6-deoxy-D-glucose (1). [Carbohydrate structure: see text]. Five enzymes including dTMP kinase (TMK), acetate kinase (ACK), dTDP-glucose synthase (TGS), dTDP-glucose 4,6-dehydratase (DH), and dTDP-4-keto-6-deoxy-d-glucose aminotransferase (GerB) were used to synthesize 2 on a large scale from glucose-1-phosphate and TMP. A conversion yield of up to 57% was obtained by HPLC peak integration given a reaction time of 270min. After purification by two successive preparative HPLC systems, the final product was identified by HPLC and then analyzed by (1)H, (13)C, (1)H-(1)H COSY NMR spectrometry.  相似文献   

10.
4,6-O-Butylidene-N-(2-hydroxybenzylidene)-beta-D-glucopyranosylamine was synthesized and characterized using analytical, spectral and single-crystal X-ray diffraction methods. 1H and 13C NMR studies showed the presence of the beta-anomer, which has also been confirmed by the crystal structure. The molecular structure of this compound showed the presence of the tridentate ONO ligation-core. Both precursors, 4,6-O-butylidene-alpha-D-glucopyranose and 4,6-O-butylidene-beta-D-glucopyranosylamine were characterized using single crystal X-ray diffraction. The alpha-anomeric nature of the former and beta-anomeric nature of the latter were proposed based on 1H NMR studies and were confirmed by determining the crystal structures. In addition, the crystal structure of 4,6-O-butylidene-beta-D-glucopyranosylamine revealed the C-1-N-glycosylation. In all the three molecules, the saccharide unit exhibits a 4C(1) chair conformation. In the lattice, the molecules are connected by hydrogen-bond interactions. The conformation of 4,6-O-butylidene-N-(2-hydroxybenzylidene)-beta-D-glucopyranosylamine is stabilized via an O-H...N intramolecular interaction, and each molecule in the lattice interacts with three neighboring molecules through hydrogen bonds of the type O-H...O and C-H...O.  相似文献   

11.
The identification of small molecule inhibitors of IRAK4 for the treatment of autoimmune diseases has been an area of intense research. We discovered novel 4,6-diaminonicotinamides which potently inhibit IRAK4. Optimization efforts were aided by X-ray crystal structures of inhibitors bound to IRAK4. Structure activity relationship (SAR) studies led to the identification of compound 29 which exhibited sub-micromolar potency in a LTA stimulated cellular assay.  相似文献   

12.
Two 2-oxa-7-thiabicyclo[4.2.0]octane derivatives, 4 and 10, with the D-galacto and D-gulo configuration, respectively, were obtained from methyl alpha-D-glucopyranoside. The thietane cyclization involved a thio-Mitsunobu reaction resulting in a 6-thioacetate, which underwent selective base-catalyzed intramolecular nucleophilic substitution at a C-4 mesylate. The structures of 4 and 10 were elucidated by X-ray diffraction analysis.  相似文献   

13.
SAR around 4,6-diaminopyrimidine derivatives allowed the discovery of the first potent dual M(3) antagonists and PDE4 inhibitors. Various chemical modulations around that scaffold led to the discovery of ucb-101333-3 which is characterized by the most interesting profile on both targets.  相似文献   

14.
Musumeci D  Roviello GN  Sica D 《Steroids》2004,69(3):173-179
In order to find new ways for the functionalization of the A and B rings of the steroid nucleus, the reaction of 5alpha-androst-2-en-17beta-ol 17-acetate (1), cholesta-2,4-diene (4) and cholesta-4,6-dien-3beta-ol 3-acetate (7) was examined using stoichiometric amounts of ruthenium tetraoxide to yield 1,2-cis diols and/or alpha-hydroxy ketones. The reaction of 5alpha-cholest-2-en-3-ol 3-acetate (9) with ruthenium tetraoxide was also carried out and afforded, apart from an alpha-hydroxy ketone, also a diketone and a seco-dicarboxylic acid. The structures of all new steroids, including stereochemical details, were deduced by analysis of spectral data.  相似文献   

15.
16.
17.
A high-molecular-mass O-specific polysaccharide was obtained by mild acid degradation of Proteus vulgaris O4 lipopolysaccharide followed by GPC. The polysaccharide was studied by chemical methods along with 1H and 13C NMR spectroscopy, including two-dimensional COSY, TOCSY, NOESY, H-detected 1H,13C HMQC, and 1H,13C HMBC experiments. Solvolysis of the polysaccharide with trifluoromethanesulfonic (triflic) acid resulted in a GlcpA-(1 --> 3)-GlcNAc disaccharide and a novel amino sugar derivative, 4,6-dideoxy-4-[N-[(R)-3-hydroxybutyryl]-L-alanyl]amino-D-glucose [Qui4N(HbAla)]. On the basis of the data obtained, the following structure of the tetrasaccharide repeating unit of the O-specific polysaccharide was established: --> 4)-beta-D-GlcpA-(1 --> 3)-beta-D-GlcpNAc-(1 --> 2)-beta-D-Quip4N(HbAla)-(1 --> 3)-alpha-D-Galp-(1 -->. This structure is unique among the O-specific polysaccharides, which is in accordance with classification of the strain studied in a separate Proteus serogroup.  相似文献   

18.
Synthesis of 4-amino-4,6-androstadiene-3,17-dione 7, an analog of formestane used in breast cancer therapy as an aromatase inhibitor, from 4-acetoxy-4-androstene-3,17-dione 2 is described. This is the first report of a 4-amino diene (4,6) system in this series of molecules. The new (7) and reported molecules were screened by the National Cancer Institute (NCI, Bethesda, USA) for in vitro antitumor activity against 60 human cancer cell lines. Molecule 7 showed best activity against breast cancer cell line (MCF-7).  相似文献   

19.
Benzylidenation of readily available 1,5-anhydro-d-hex-1-en-3-ulose, followed by sodium borohydride reduction, afforded the title compounds in high yields. Separation of 4,6-O-benzylidene-d-allal and -d-glucal was accomplished by selective acetylation with lipase PS.  相似文献   

20.
Synthesis of 3-O-acetyl-2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene- alpha-(7 alpha) and-beta-D-glucopyranose (7 beta) and their 3-O-chloroacetyl analogues (11 alpha and 11 beta) are described. Condensation (BF3-etherate, ethyl acetate, -20 degrees) of 7 alpha with 4'-O-benzyloxycarbonyl-4'-O-demethyl-4-epipodophyllotoxin (8) afforded mainly the beta-glycoside 9 beta (alpha, beta-ratio 1:9). Condensation of 11 alpha beta with 8 or the 4'-O-chloroacetyl analogue 13 gave mainly the 4-O-(2-benzyloxycarbonylamino-3-O-chloroacetyl-2-deoxy-4,6-O-ethyl idene-beta-D- glucopyranosyl)-epipodophyllotoxin 12 beta or 15 beta. Glycosidation of podophyllotoxin (14) with 11 alpha beta (during which the aglycon epimerized at C-4 under the action of BF3-etherate) afforded alpha- (16 alpha) and beta-glycoside (16 beta) in the ratio 1:5. Removal of the chloroacetyl groups from 12 beta, its alpha analogue 12 alpha, and 15 beta gave the 4-O-(2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene-alpha-(17 alpha) and -beta-D-glucopyranosyl)-4'-O-demethyl-epipodophyllotoxins (17 beta and 20 beta), respectively. Hydrogenolysis of the benzyloxycarbonyl groups then gave 4-O-(2-amino-2-deoxy-4,6-O-ethylidene-alpha- (18 alpha) and -beta-D-glucopyranosyl)-4'-O-demethyl-4-epipodophyllotoxin (18 beta). Reductive alkylation of 18 beta and 18 alpha afforded the 2"-deoxy-2"-dimethylamino-etoposide 3 and its alpha analogue 19 alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号