首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of chondroitin sulfate and chondroitin   总被引:2,自引:0,他引:2  
The production of microbial polysaccharides has recently gained much interest because of their potential biotechnological applications. Several pathogenic bacteria are known to produce capsular polysaccharides, which provide a protection barrier towards harsh environmental conditions, and towards host defences in case of invasive infections. These capsules are often composed of glycosaminoglycan-like polymers. Glycosaminoglycans are essential structural components of the mammalian extracellular matrix and they have several applications in the medical, veterinary, pharmaceutical and cosmetic field because of their peculiar properties. Most of the commercially available glycosaminoglycans have so far been extracted from animal sources, and therefore the structural similarity of microbial capsular polysaccharides to these biomolecules makes these bacteria ideal candidates as non-animal sources of glycosaminoglycan-derived products. One example is hyaluronic acid which was formerly extracted from hen crests, but is nowadays produced via Streptococci fermentations. On the other hand, no large scale biotechnological production processes for heparin and chondrotin sulfate have been developed. The larger demand of these biopolymers compared to hyaluronic acid (tons vs kilograms), due to the higher titre in the final product (grams vs milligrams/dose), and the scarce scientific effort have hampered the successful development of fermentative processes. In this paper we present an overview of the diverse applications and production methods of chondroitin reported so far in literature with a specific focus on novel microbial biotechnological approaches.  相似文献   

2.
Chondroitin sulfate-E (chondroitin-4, 6-disulfate) was prepared from chondroitin sulfate-A (chondroitin-4 - sulfate) by regioselective sulfonation, performed using trimethylamine sulfur trioxide in formamide under argon. The structure of semi-synthetic chondroitin sulfate-E was analyzed by PAGE, (1)H NMR, (13)C NMR, 2D NMR and disaccharide analysis and compared with natural chondroitin sulfate-E. Both semi-synthetic and natural chondroitin sulfate-E were each biotinylated and immobilized on BIAcore SA biochips and their interactions with fibroblast growth factors displayed very similar binding kinetics and binding affinities. The current semi-synthesis offers an economical approach for the preparation of the rare chondroitin sulfate-E from the readily available chondroitin sulfate-A.  相似文献   

3.
We recently cloned human chondroitin synthase (ChSy) exhibiting the glucuronyltransferase-II (GlcATII) and N-acetylgalactosaminyltransferase-II (GalNAcTII) activities responsible for the biosynthesis of repeating disaccharide units of chondroitin sulfate, but chondroitin polymerization was not demonstrated in vitro using the recombinant ChSy. We report here that the chondroitin polymerizing activity requires concomitant expression of a novel protein designated chondroitin polymerizing factor (ChPF) with ChSy. The human ChPF consists of 775 amino acids with a type II transmembrane protein topology. The amino acid sequence displayed 23% identity to that of human ChSy. The expression of a soluble recombinant form of the protein in COS-1 cells produced a protein with little GlcAT-II or GalNAcT-II activity. In contrast, coexpression of the ChPF and ChSy yielded markedly augmented glycosyltransferase activities, whereas simple mixing of the two separately expressed proteins did not. Moreover, using both UDP-glucuronic acid (GlcUA) and UDP-N-acetylgalactosamine (GalNAc) as sugar donors, chondroitin polymerization was demonstrated on the so-called glycosaminoglycan-protein linkage region tetrasaccharide sequence of alpha-thrombomodulin. These results suggested that the ChPF acts as a specific activating factor for ChSy in chondroitin polymerization. The coding region of the ChPF was divided into four discrete exons and localized to chromosome 2q35-q36. Northern blot analysis revealed that the ChPF gene exhibited a markedly different expression pattern among various human tissues, which was similar to that of ChSy. Thus, the ChPF is required for chondroitin polymerizing activity of mammalian ChSy.  相似文献   

4.
Recently, we demonstrated that chondroitin polymerization is achieved by any two combinations of human chondroitin synthase-1 (ChSy-1), ChSy-2 (chondroitin sulfate synthase 3, CSS3), and chondroitin-polymerizing factor (ChPF). Although an additional ChSy family member, called chondroitin sulfate glucuronyltransferase (CSGlcA-T), has been identified, its involvement in chondroitin polymerization remains unclear because it possesses only glucuronyltransferase II activity responsible for the elongation of chondroitin sulfate (CS) chains. Herein, we report that CSGlcA-T exhibits polymerization activity on alpha-thrombomodulin bearing the truncated linkage region tetrasaccharide through its interaction with ChSy-1, ChSy-2 (CSS3), or ChPF, and the chain length of chondroitin formed by the co-expressed proteins in various combinations is different. In addition, ChSy family members co-expressed in various combinations exhibited distinct but overlapping acceptor substrate specificities toward the two synthetic acceptor substrates, GlcUAbeta1-3Galbeta1-O-naphthalenemethanol and GlcUAbeta1-3Galbeta1-O-C(2)H(4)NH-benzyloxycarbonyl, both of which share the disaccharide sequence with the glycosaminoglycan-protein linkage region tetrasaccharide. Moreover, overexpression of CSGlcA-T increased the amount of CS in HeLa cells, whereas the RNA interference of CSGlcA-T resulted in a reduction of the amount of CS in the cells. Furthermore, the analysis using the CSGlcA-T mutant that lacks any glycosyltransferase activity but interacts with other ChSy family members showed that the glycosyltransferase activity of CSGlcA-T plays an important role in chondroitin polymerization. Overall, these results suggest that chondroitin polymerization is achieved by multiple combinations of ChSy-1, ChSy-2, CSGlcA-T, and ChPF and that each combination may play a unique role in the biosynthesis of CS. Based on these results, we renamed CSGlcA-T chondroitin synthase-3 (ChSy-3).  相似文献   

5.
Previously, we have demonstrated that co-expression of ChSy-1 (chondroitin synthase-1), with ChPF (chondroitin-polymerizing factor) resulted in a marked augmentation of glycosyltransferase activities and the expression of the chondroitin polymerase activity of ChSy-1. These results prompted us to evaluate the effects of co-expression of the recently cloned CSS3 (chondroitin sulfate synthase-3) with ChPF, because ChSy-1 and CSS3 have similar properties, i.e. they possess GalNAcT-II (N-acetylgalactosaminyltransferase-II) and GlcAT-II (glucuronyltransferase-II) activities responsible for the elongation of CS (chondroitin sulfate) chains but cannot polymerize chondroitin chains by themselves. Co-expressed CSS3 and ChPF showed not only substantial GalNAcT-II and GlcAT-II activities but also chondroitin polymerase activity. Interestingly, co-expressed ChSy-1 and CSS3 also exhibited polymerase activity. The chain length of chondroitin formed by the co-expressed proteins in various combinations was different. In addition, interactions between any two of ChSy-1, CSS3 and ChPF were demonstrated by pull-down assays. Moreover, overexpression of CSS3 increased the amount of CS in HeLa cells, while the RNA interference of CSS3 resulted in a reduction in the amount of CS in the cells. Altogether these results suggest that chondroitin polymerization is achieved by multiple combinations of ChSy-1, CSS3 and ChPF. Based on these characteristics, we have renamed CSS3 ChSy-2 (chondroitin synthase-2).  相似文献   

6.
Escherichia coli strain K4 expresses a chondroitin (CH)-polymerizing enzyme (K4CP) that contains two glycosyltransferase active domains. K4CP alternately transfers glucuronic acid (GlcA) and N-acetyl-galactosamine (GalNAc) residues using UDP-GlcA and UDP-GalNAc donors to the nonreducing end of a CH chain acceptor. Here we generated two K4CP point mutants substituted at the UDP-sugar binding motif (DXD) in the glycosyltransferase active domains, which showed either glycosyltransferase activity of the intact domain and retained comparable activity after immobilization onto agarose beads. The mutant enzyme-immobilized beads exhibited an addition of GlcA or GalNAc to GalNAc or GlcA residue at the nonreducing end of CH oligosaccharides and sequentially elongated pyridylamine-conjugated CH (PA-CH) chain by the alternate use. The sequential elongation up to 16-mer was successfully achieved as assessed by fluorescent detection on a gel filtration chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI potential lift tandem TOF mass spectrometry (MALDI-LIFT-TOF/TOF MS/MS) analyses in the negative reflection mode. This method provides exactly defined CH oligosaccharide derivatives, which are useful for studies on glycosaminoglycan functions.  相似文献   

7.
8.
9.
10.
11.
Monolayer cultures of embryonic chick chondrocytes were incubated with 35SO42- in the presence and absence of 1.0 mM p-nitrophenyl-beta-d-xyloside for 2 days. The relative amounts of chondroitin sulfate proteoglycan and free polysaccharide chains were measured following gel filtration on Sephadex G-200. Synthesis of beta-xyloside-initiated polysaccharide chains was accompanied by an apparent decrease in chondroitin sulfate proteoglycan production by the treated cultures. When levels of cartilage-specific core protein were determined by a radioimmunoassay, similar amounts of core protein were found in both beta-xyloside and control cultures, indicating that decreased synthesis of core protein is not responsible for the observed decrease in chondroitin sulfate proteoglycan production. Activity levels of the chain-initiating glycosyltransferases (UDP-D-xylose: core protein xylosyltransferase and UDP-D-galactose:D-xylose galactosyltransferase) as well as the extent of xylosylation of core protein were found to be similar in cell extracts from both culture types. Furthermore, beta-xylosides did not inhibit the xylosyltransferase reaction in cell-free studies. In contrast, the beta-xylosides effectively competed with several galactose acceptors, including an enzymatically synthesized xylosylated core protein acceptor, in the first galactosyltransferase reaction.  相似文献   

12.
By heating the pyridinium salts of chondroitin 4- and 6-sulfates in dimethyl sulfoxide containing 10% of water or methanol at 80 degrees C for 1--5 h, several chondroitin preparations with sulfur contents of 0.02--1.05% were prepared in 83--96% yields, respectively. Chemical properties of the preparations, such as degrees of desulfation and of depolymerization, were compared with those of the products obtained by the previously described methods.  相似文献   

13.
The chondroitin 4-sulfate-protein linkage   总被引:17,自引:0,他引:17  
  相似文献   

14.
15.
Two distinct sulfotransferases (chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase), which catalyzed transfer of sulfate to position 6 and position 4 of acetylgalactosamine residues of chondroitin, were extracted from epiphyseal cartilage of 14-day-old chick embryos and separated by gel chromatography on Sephacryl S-200 in the presence of 3 M guanidine-HCl. When the enzyme solutions containing 3 M guanidine-HCl were dialyzed against 0.02 M Tris-HCl, pH 7.2, containing 10% glycerol, chondroitin 4-sulfotransferase became almost insoluble, whereas chondroitin 6-sulfotransferase remained soluble. Endogenous acceptors for sulfate transfer were completely removed from both enzyme preparations. Addition of basic proteins and polyamines as well as Mn2+ to the incubation medium caused a stimulation of both sulfotransferases; the stimulation of chondroitin 6-sulfotransferase with these cations was higher than that of chondroitin 4-sulfotransferase. The Km values for 3′-phosphoadenylyl sulfate of both enzymes were much smaller in the presence of protamine or spermine than in the presence of Mn2+. The two sulfotransferases differed in the requirement for sulfhydryl compounds; in the absence of sulfhydryl compounds, the activity of chondroitin 4-sulfotransferase was very low, whereas the activity of chondroitin 6-sulfotransferase was essentially unaffected. These observations indicate that at least two sulfotransferases are involved in the biosynthesis of chondroitin sulfate, and suggest that the production of the isomers of chondroitin sulfate in chondrocytes is affected by various factors such as the intracellular concentration of sulfhydryl compounds and basic substances.  相似文献   

16.
We found that chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase were released into the culture medium from the cultured chick embryo chondrocytes. Since the release of the sulfotransferases was observed not only in serum-supplemented medium but also in serum-free medium, the released sulfotransferases were unlikely to be derived from serum. Addition of ascorbate to the serum-free medium supported the continuous release of the sulfotransferases. Monensin, which is known to cause dilatation of the Golgi apparatus and to inhibit sulfation of proteoglycan, was found to affect the release of the sulfotransferases. In the presence of 10(-6) M monensin, chondroitin 6-sulfotransferase activity in the cell layer was decreased to less than one tenth of the control, and the rate of the release of the activity became much smaller than the control after the initial rapid release. The activity of chondroitin 4-sulfotransferase was also affected by monensin, but the reduction of the chondroitin 4-sulfotransferase activity in the cell layer was not so great as the reduction of chondroitin 6-sulfotransferase activity. Unlike to the microsomal sulfotransferases, both chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase released into the culture medium were retained in the soluble fraction after centrifugation at 100,000 x g for 60 min, and were not activated by detergent. pH optimum and requirements for sulfhydryl compounds of the released sulfotransferases were similar to those observed previously in the chondroitin sulfotransferases from chick embryo cartilage and from cultured chick embryo chondrocytes. These results suggest that chondroitin sulfotransferases, which are localized in the Golgi apparatus, may be secreted to the extracellular space in a soluble form under the culture conditions.  相似文献   

17.
18.
Stability studies of chondroitin sulfate.   总被引:3,自引:0,他引:3  
The stability of chondroitin sulfate (CS) was studied under acidic, neutral and basic conditions at 30 and 60 degrees C. CS is remarkably stable under neutral conditions at low temperature, while it degrades at 60 degrees C producing low-molecular-mass fragments and desulfated products. This decomposition process begins at ca. 500-600 h and is consistent with an acid-catalyzed hydrolysis of glycosidic linkages caused by a drop in pH resulting from acidic products. Under basic conditions, a breakdown of glycosidic linkages causes a decrease in molecular mass due to the beta-elimination reaction, confirmed by a strong increase of absorbance at 232 nm and 1H NMR. Virtually no loss of O-sulfate groups can be detected in the base-treated CS. Under acidic conditions, the molecular mass decreases probably through hydrolysis of polysaccharidic linkages resulting in an increased number of reducing end groups. Little or no beta-elimination occurs. A loss of O-sulfate groups was detected, producing desulfated derivatives.  相似文献   

19.
Recently, it has been shown that a deficiency in ChGn-1 (chondroitin N-acetylgalactosaminyltransferase-1) reduced the numbers of CS (chondroitin sulfate) chains, leading to skeletal dysplasias in mice. Although these results indicate that ChGn-1 regulates the number of CS chains, the mechanism mediating this regulation is not clear. ChGn-1 is thought to initiate CS biosynthesis by transferring the first GalNAc (N-acetylgalactosamine) to the tetrasaccharide in the protein linkage region of CS. However, in vitro chondroitin polymerization does not occur on the non-reducing terminal GalNAc-linkage pentasaccharide structure. In the present study we show that several different heteromeric enzyme complexes composed of different combinations of four chondroitin synthase family members synthesized more CS chains when a GalNAc-linkage pentasaccharide structure with a non-reducing terminal 4-O-sulfation was the CS acceptor. In addition, C4ST-2 (chondroitin 4-O-sulfotransferase-2) efficiently transferred sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 4 of non-reducing terminal GalNAc-linkage residues, and the number of CS chains was regulated by the expression levels of C4ST-2 and of ChGn-1. Taken together, the results of the present study indicate that C4ST-2 plays a key role in regulating levels of CS synthesized via ChGn-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号