首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a dynamical model of cancer growth including three interacting cell populations of tumor cells, healthy host cells and immune effector cells. The tumor–immune and the tumor–host interactions are characterized to reproduce experimental results. A thorough dynamical analysis of the model is carried out, showing its capability to explain theoretical and empirical knowledge about tumor development. A chemotherapy treatment reproducing different experiments is also introduced. We believe that this simple model can serve as a foundation for the development of more complicated and specific cancer models.  相似文献   

2.
The ability to invade tissue is one of the hallmarks of cancer. Cancer cells achieve this through the secretion of matrix degrading enzymes, cell proliferation, loss of cell–cell adhesion, enhanced cell–matrix adhesion and active migration. Invasion of tissue by the cancer cells is one of the key components in the metastatic cascade, whereby cancer cells spread to distant parts of the host and initiate the growth of secondary tumours (metastases). A better understanding of the complex processes involved in cancer invasion may ultimately lead to treatments being developed which can localise cancer and prevent metastasis. In this paper we formulate a novel continuum model of cancer cell invasion of tissue which explicitly incorporates the important biological processes of cell–cell and cell–matrix adhesion. This is achieved using non-local (integral) terms in a system of partial differential equations where the cells use a so-called “sensing radius” R to detect their environment. We show that in the limit as R→0 the non-local model converges to a related system of reaction–diffusion–taxis equations. A numerical exploration of this model using computational simulations shows that it can form the basis for future models incorporating more details of the invasion process.  相似文献   

3.
4.
MOTIVATION: Cancer is well known to be the end result of somatic mutations that disrupt normal cell division. The number of such mutations that have to be accumulated in a cell before cancer develops depends on the type of cancer. The waiting time T(m) until the appearance of m mutations in a cell is thus an important quantity in population genetics models of carcinogenesis. Such models are often difficult to analyze theoretically because of the complex interactions of mutation, drift and selection. They are also computationally expensive to simulate because of the large number of cells and the low mutation rate. RESULTS: We develop an efficient algorithm for simulating the waiting time T(m) until m mutations under a population genetics model of cancer development. We use an exact algorithm to simulate evolution of small cell populations and coarse-grained τ-leaping approximation to handle large populations. We compared our hybrid simulation algorithm with the exact algorithm in small populations and with available asymptotic results for large populations. The comparison suggested that our algorithm is accurate and computationally efficient. We used the algorithm to study the waiting time for up to 20 mutations under a Moran model with variable population sizes. Our new algorithm may be useful for studying realistic models of carcinogenesis, which incorporates variable mutation rates and fitness effects.  相似文献   

5.
Spatio-temporal pattern formation in reaction–diffusion models of interacting populations is an active area of research due to various ecological aspects. Instability of homogeneous steady-states can lead to various types of patterns, which can be classified as stationary, periodic, quasi-periodic, chaotic, etc. The reaction–diffusion model with Rosenzweig–MacArthur type reaction kinetics for prey–predator type interaction is unable to produce Turing patterns but some non-Turing patterns can be observed for it. This scenario changes if we incorporate non-local interactions in the model. The main objective of the present work is to reveal possible patterns generated by the reaction–diffusion model with Rosenzweig–MacArthur type prey–predator interaction and non-local consumption of resources by the prey species. We are interested in the existence of Turing patterns in this model and in the effect of the non-local interaction on the periodic travelling wave and spatio-temporal chaotic patterns. Global bifurcation diagrams are constructed to describe the transition from one pattern to another one.  相似文献   

6.
We present a model of the cell signalling network based on the generic properties of interactions between protein kinases (PKs) and protein phosphatases (PPs) inside cells. The model is designed to examine the global properties and intrinsic dynamics of the phosphorylation system. A genetic algorithm (GA) is used to evolve populations of "cells". The GA selects cells and ranks them based on an analysis of the dynamics of the proteins within the networks from a series of different random starting conditions. The fittest cells are taken to be those which can generate a variety of different "behaviours" from a series of different initial conditions. During the GA, intracellular protein interactions evolve via mutation and an analogue of domain shuffling between protein types that is thought to occur during biological evolution. The dynamics of the simulated networks are presented and we discuss the hypothesis that changes in the behaviour of a cell may be interpretable as a switch between attractor basins in the intracellular signalling network.  相似文献   

7.
Since we still know very little about stem cells in their natural environment, it is useful to explore their dynamics through modelling and simulation, as well as experimentally. Most models of stem cell systems are based on deterministic differential equations that ignore the natural heterogeneity of stem cell populations. This is not appropriate at the level of individual cells and niches, when randomness is more likely to affect dynamics. In this paper, we introduce a fast stochastic method for simulating a metapopulation of stem cell niche lineages, that is, many sub-populations that together form a heterogeneous metapopulation, over time. By selecting the common limiting timestep, our method ensures that the entire metapopulation is simulated synchronously. This is important, as it allows us to introduce interactions between separate niche lineages, which would otherwise be impossible. We expand our method to enable the coupling of many lineages into niche groups, where differentiated cells are pooled within each niche group. Using this method, we explore the dynamics of the haematopoietic system from a demand control system perspective. We find that coupling together niche lineages allows the organism to regulate blood cell numbers as closely as possible to the homeostatic optimum. Furthermore, coupled lineages respond better than uncoupled ones to random perturbations, here the loss of some myeloid cells. This could imply that it is advantageous for an organism to connect together its niche lineages into groups. Our results suggest that a potential fruitful empirical direction will be to understand how stem cell descendants communicate with the niche and how cancer may arise as a result of a failure of such communication.  相似文献   

8.
Cells contracting in extracellular matrix (ECM) can transmit stress over long distances, communicating their position and orientation to cells many tens of micrometres away. Such phenomena are not observed when cells are seeded on substrates with linear elastic properties, such as polyacrylamide (PA) gel. The ability for fibrous substrates to support far reaching stress and strain fields has implications for many physiological processes, while the mechanical properties of ECM are central to several pathological processes, including tumour invasion and fibrosis. Theoretical models have investigated the properties of ECM in a variety of network geometries. However, the effects of network architecture on mechanical cell–cell communication have received little attention. This work investigates the effects of geometry on network mechanics, and thus the ability for cells to communicate mechanically through different networks. Cell-derived displacement fields are quantified for various network geometries while controlling for network topology, cross-link density and micromechanical properties. We find that the heterogeneity of response, fibre alignment, and substrate displacement fields are sensitive to network choice. Further, we show that certain geometries support mechanical communication over longer distances than others. As such, we predict that the choice of network geometry is important in fundamental modelling of cell–cell interactions in fibrous substrates, as well as in experimental settings, where mechanical signalling at the cellular scale plays an important role. This work thus informs the construction of theoretical models for substrate mechanics and experimental explorations of mechanical cell–cell communication.  相似文献   

9.
The invasion of cancer is a major clinical problem. It is now apparent that invasion is not a simply a cancer cell autonomous process but relies on a complex network of paracrine interactions. Furthermore, this network can change as cancer cells disseminate. Here we summarise the key components of the network and their mechanisms of communication. Finally, we discuss the difficulties and opportunities that this complex network of interactions presents during cancer therapy.  相似文献   

10.
Invasion and metastasis of solid tumors are the major causes of death in cancer patients. Cancer stem cells (CSCs) constitute a small fraction of tumor cell population, but play a critical role in tumor invasion and metastasis. The xenograft of tumor cells in immunodeficient mice is one of commonly used in vivo models to study the invasion and metastasis of cancer cells. However, this model is time-consuming and labor intensive. Zebrafish (Danio rerio) and their transparent embryos are emerging as a promising xenograft tumor model system for studies of tumor invasion. In this study, we established a tumor invasion model by using zebrafish embryo xenografted with human glioblastoma cell line U87 and its derived cancer stem cells (CSCs). We found that CSCs-enriched from U87 cells spreaded via the vessels within zebrafish embryos and such cells displayed an extremely high level of invasiveness which was associated with the up-regulated MMP-9 by CSCs. The invasion of glioma CSCs (GSCs) in zebrafish embryos was markedly inhibited by an MMP-9 inhibitor. Thus, our zebrafish embryo model is considered a cost-effective approach tostudies of the mechanisms underlying the invasion of CSCs and suitable for high-throughput screening of novel anti-tumor invasion/metastasis agents.  相似文献   

11.
12.
Cell cycle times are vital parameters in cancer research, and short cell cycle times are often related to poor survival of cancer patients. A method for experimental estimation of cell cycle times, or doubling times of cultured cancer cell populations, based on addition of paclitaxel (an inhibitor of cell division) has been proposed in literature. We use a mathematical model to investigate relationships between essential parameters of the cell division cycle following inhibition of cell division. The reduction in the number of cells engaged in DNA replication reaches a plateau as the concentration of paclitaxel is increased; this can be determined experimentally. From our model we have derived a plateau log reduction formula for proliferating cells and established that there are linear relationships between the plateau log reduction values and the reciprocal of doubling times (i.e. growth rates of the populations). We have therefore provided theoretical justification of an important experimental technique to determine cell doubling times. Furthermore, we have applied Monte Carlo experiments to justify the suggested linear relationships used to estimate doubling time from 5-day cell culture assays. We show that our results are applicable to cancer cell populations with cell loss present.  相似文献   

13.
The fluorescent ubiquitination-based cell cycle indicator, also known as FUCCI, allows the visualization of the G1 and S/G2/M cell cycle phases of individual cells. FUCCI consists of two fluorescent probes, so that cells in the G1 phase fluoresce red and cells in the S/G2/M phase fluoresce green. FUCCI reveals real-time information about cell cycle dynamics of individual cells, and can be used to explore how the cell cycle relates to the location of individual cells, local cell density, and different cellular microenvironments. In particular, FUCCI is used in experimental studies examining cell migration, such as malignant invasion and wound healing. Here we present, to our knowledge, new mathematical models that can describe cell migration and cell cycle dynamics as indicated by FUCCI. The fundamental model describes the two cell cycle phases, G1 and S/G2/M, which FUCCI directly labels. The extended model includes a third phase, early S, which FUCCI indirectly labels. We present experimental data from scratch assays using FUCCI-transduced melanoma cells, and show that the predictions of spatial and temporal patterns of cell density in the experiments can be described by the fundamental model. We obtain numerical solutions of both the fundamental and extended models, which can take the form of traveling waves. These solutions are mathematically interesting because they are a combination of moving wavefronts and moving pulses. We derive and confirm a simple analytical expression for the minimum wave speed, as well as exploring how the wave speed depends on the spatial decay rate of the initial condition.  相似文献   

14.
Cells of different organs at different ages have an intrinsic set of kinetics that dictates their behavior. Transformation into cancer cells will inherit these kinetics that determine initial cell and tumor population progression dynamics. Subject to genetic mutation and epigenetic alterations, cancer cell kinetics can change, and favorable alterations that increase cellular fitness will manifest themselves and accelerate tumor progression. We set out to investigate the emerging intratumoral heterogeneity and to determine the evolutionary trajectories of the combination of cell-intrinsic kinetics that yield aggressive tumor growth. We develop a cellular automaton model that tracks the temporal evolution of the malignant subpopulation of so-called cancer stem cells(CSC), as these cells are exclusively able to initiate and sustain tumors. We explore orthogonal cell traits, including cell migration to facilitate invasion, spontaneous cell death due to genetic drift after accumulation of irreversible deleterious mutations, symmetric cancer stem cell division that increases the cancer stem cell pool, and telomere length and erosion as a mitotic counter for inherited non-stem cancer cell proliferation potential. Our study suggests that cell proliferation potential is the strongest modulator of tumor growth. Early increase in proliferation potential yields larger populations of non-stem cancer cells(CC) that compete with CSC and thus inhibit CSC division while a reduction in proliferation potential loosens such inhibition and facilitates frequent CSC division. The sub-population of cancer stem cells in itself becomes highly heterogeneous dictating population level dynamics that vary from long-term dormancy to aggressive progression. Our study suggests that the clonal diversity that is captured in single tumor biopsy samples represents only a small proportion of the total number of phenotypes.  相似文献   

15.
Lung cancer is one of the leading causes of cancer-related deaths worldwide and is characterized by hijacking immune system for active growth and aggressive metastasis. Neutrophils, which in their original form should establish immune activities to the tumor as a first line of defense, are undermined by tumor cells to promote tumor invasion in several ways. In this study, we investigate the mutual interactions between the tumor cells and the neutrophils that facilitate tumor invasion by developing a mathematical model that involves taxis-reaction-diffusion equations for the critical components in the interaction. These include the densities of tumor and neutrophils, and the concentrations of signaling molecules and structure such as neutrophil extracellular traps (NETs). We apply the mathematical model to a Boyden invasion assay used in the experiments to demonstrate that the tumor-associated neutrophils can enhance tumor cell invasion by secreting the neutrophil elastase. We show that the model can both reproduce the major experimental observation on NET-mediated cancer invasion and make several important predictions to guide future experiments with the goal of the development of new anti-tumor strategies. Moreover, using this model, we investigate the fundamental mechanism of NET-mediated invasion of cancer cells and the impact of internal and external heterogeneity on the migration patterning of tumour cells and their response to different treatment schedules.  相似文献   

16.
Natarajan L  Berry CC  Gasche C 《Biometrics》2003,59(3):555-561
Spontaneous or randomly occurring mutations play a key role in cancer progression. Estimation of the mutation rate of cancer cells can provide useful information about the disease. To ascertain these mutation rates, we need mathematical models that describe the distribution of mutant cells. In this investigation, we develop a discrete time stochastic model for a mutational birth process. We assume that mutations occur concurrently with mitosis so that when a nonmutant parent cell splits into two progeny, one of these daughter cells could carry a mutation. We propose an estimator for the mutation rate and investigate its statistical properties via theory and simulations. A salient feature of this estimator is the ease with which it can be computed. The methods developed herein are applied to a human colorectal cancer cell line and compared to existing continuous time models.  相似文献   

17.
Cell–cell interactions play an important role in spatial organization (pattern formation) during the development of multicellular organisms. An understanding of these biological roles requires identifying cell phenotypes that are regulated by cell–cell interactions and characterizing the spatial organizations of the phenotypes. However, conventional methods for assaying cell–cell interactions are mainly applicable at a cell population level. These measures are incapable of elucidating the spatial organizations of the phenotypes, resulting in an incomplete view of cell–cell interactions. To overcome this issue, we developed an automated image-based method to investigate cell–cell interactions based on spatial localizations of cells. We demonstrated this method in cultured cells using cell density-dependent nucleocytoplasmic distribution of β-catenin and aryl hydrocarbon receptor as the phenotype. This novel method was validated by comparing with a conventional population-based method, and proved to be more sensitive and reliable. The application of the method characterized how the phenotypes were spatially organized in a population of cultured cells. We further showed that the spatial organization was governed by cell density and was protein-specific. This automated method is very simple, and will be applicable to study cell–cell interactions in different systems from prokaryotic colonies to multicellular organisms. We envision that the ability to extract and interpret how cell–cell interactions determine the spatial organization of a cell phenotype will provide new insights into biology that may be missed by traditional population-averaged studies.  相似文献   

18.
19.
Cell polarization, in which intracellular substances are asymmetrically distributed, enables cells to carry out specialized functions. While cell polarity is often induced by intracellular or extracellular spatial cues, spontaneous polarization (the so-called symmetry breaking) may also occur in the absence of spatial cues. Many computational models have been used to investigate the mechanisms of symmetry breaking, and it was proved that spontaneous polarization occurs when the lateral diffusion of inactive signaling molecules is much faster than that of active signaling molecules. This conclusion leaves an important question of how, as observed in many biological systems, cell polarity emerges when active and inactive membrane-bound molecules diffuse at similar rates while cycling between cytoplasm and membrane takes place. The recent studies of Rätz and Röger showed that, when the cytosolic and membrane diffusion are very different, spontaneous polarization is possible even if the membrane-bound species diffuse at the same rate. In this paper, we formulate a two-equation non-local reaction-diffusion model with general forms of positive feedback. We apply Turing stability analysis to identify parameter conditions for achieving cell polarization. Our results show that spontaneous polarization can be achieved within some parameter ranges even when active and inactive signaling molecules diffuse at similar rates. In addition, different forms of positive feedback are explored to show that a non-local molecule-mediated feedback is important for sharping the localization as well as giving rise to fast dynamics to achieve robust polarization.  相似文献   

20.
Estimation of division and death rates of lymphocytes in different conditions is vital for quantitative understanding of the immune system. Deuterium, in the form of deuterated glucose or heavy water, can be used to measure rates of proliferation and death of lymphocytes in vivo. Inferring these rates from labeling and delabeling curves has been subject to considerable debate with different groups suggesting different mathematical models for that purpose. We show that the three most common models, which are based on quite different biological assumptions, actually predict mathematically identical labeling curves with one parameter for the exponential up and down slope, and one parameter defining the maximum labeling level. By extending these previous models, we here propose a novel approach for the analysis of data from deuterium labeling experiments. We construct a model of “kinetic heterogeneity” in which the total cell population consists of many sub-populations with different rates of cell turnover. In this model, for a given distribution of the rates of turnover, the predicted fraction of labeled DNA accumulated and lost can be calculated. Our model reproduces several previously made experimental observations, such as a negative correlation between the length of the labeling period and the rate at which labeled DNA is lost after label cessation. We demonstrate the reliability of the new explicit kinetic heterogeneity model by applying it to artificially generated datasets, and illustrate its usefulness by fitting experimental data. In contrast to previous models, the explicit kinetic heterogeneity model 1) provides a novel way of interpreting labeling data; 2) allows for a non-exponential loss of labeled cells during delabeling, and 3) can be used to describe data with variable labeling length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号