首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conformational difference of the title compound (1) in the solid state and in solution has been investigated by X-ray crystallography and high-field proton n.m.r. spectrometry. In the solid state, compound 1 adopts the 4C1(d) conformation (1a), whereas 1 exists preferentially in the 1C4(d) conformation (1b) in chloroform solution.  相似文献   

2.
The conformations of d-glucono-1,5-lactone (1) and d-mannono-1,5-lactone (2) in solution were investigated by 1H- and 13C-n.m.r. spectroscopy. Conformational equilibria for 1 and 2 were found to lie strongly in favor of the 4H3(d),gg and B2,5(d),gg conformations, respectively.  相似文献   

3.
Methyl α-D- (1) and methyl β-D-glucofuranosidurono-6,3-lactone (5) were oxidized at C-2 or C-5, 1,2-O-isopropylidene-α-D- (10) and 1,2-O-cyclohexylidene-α-D-glucofuranurono-6,3-lactone (11) at C-5 by various methods to the corresponding D-arabino- or D-xylo-hexulofuranosiduronolactones. In contrast to the starting materials 5, 10, and 11, the 5-uloses 15, 17, and 18 do not exhibit reducing power in alkaline Cu2+ solutions. Methyl 5-O-benzyl-α-D- and methyl 5-O-benzyl-β-D-arabino-2-hexulofuranosidurono-6,3-lactone reduce Benedict solution at room temperature.  相似文献   

4.
Condensation of dimeric 3,4,6-tri-O-acetyl-2-deoxy-2-nitroso-α-D-glucopyranosyl chloride (1) with 1,2-O-isopropylidene-α-D-glucofuranurono-6,3-lactone (2) gave 1,2-O-isopropylidene-5-O-(3,4,6-tri-O-acetyl-2-deoxy-2-hydroxyimino-α-D-arabino-hexopyranosyl)-α-D-glucofuranurono-6,3-lactone (3). Benzoylation of the hydroxyimino group with benzoyl cyanide in acetonitrile gave 1,2-O-isopropylidene-5-O-(3,4,6-tri-O-acetyl-2-benzoyloxyimino-2-deoxy-α-D-arabino-hexopyranosyl)-α-D-glucofuranurono-6,3-lactone (4). Compound 4 was reduced with borane in tetrahydrofuran, yielding 5-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-1,2-O-isopropylidene-α-D-glucofuranose (5), which was isolated as the crystalline N-acetyl derivative (6). After removal of the isopropylidene acetal, the pure, crystalline title compound (10) was obtained.  相似文献   

5.
6.
Five copper(I) complexes having general formula [Cu2(μ-X)22-P,P-B-dppf)2] (X = Cl(1), Br(2), I(3), CN(4), and SCN(5)) were prepared starting with CuX and B-dppf in 1:1 molar ratio in DCM-MeOH (50:50 V/V) at room temperature. The complexes have been characterized by elemental analyses, IR, 1H NMR, 31P NMR and electronic spectral studies. Molecular structures for 1, 2 and 4 were determined crystallographically. Complexes 1, 2 and 4 exist as centrosymmetric dimers in which the two copper atoms are bonded to two bridging B-dppf ligands and two bridging (pseudo-)halide groups in a μ1 bonding mode to generate nearly planar Cu2(μ1-X)2 framework. Both bridging B-dppf ligands are arranged in antiperiplanar staggered conformation in 1 and 2 (mean value 56.40-56.76°), and twisted from the eclipsed conformation (mean value 78.19°) in 4. The Φ angle value in 4 is relatively larger as compared to 1 and 2. This seems to indicate that the molecular core [Cu2(μ1-X)2] in 4 is a sterically demanding system that forces the B-dppf ligand to adopt a relatively strained conformation in comparison to less strained system in 1 and 2. All the complexes exhibit moderately strong luminescence properties in the solution state at ambient temperature.  相似文献   

7.
The pyranoid conformations of 7-acetamido-6,7,8-trideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-octopyranose (3) and 7-acetamido-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-l-threo-α-d-galacto-octopyranose (4) in solution have been determined by calculation of the dihedral angles from the vicinal, proton-proton coupling-constants, using three modifications of the Karplus equation. Of these, only the equation 3J(HCCH)(φ)  (7.48  0.74 -ΣδEx)  (2.03  0.17 ΣEx)cos φ + (4.60  0.23 ΣδEx)cos 2φ + 0.06 (Σ ± ΔEx)sin φ + 0.62 (Σ ± ΔEx)sin 2φ indicates that the pyranoid part of 3 and 4 has the °S2 conformation, very slightly distorted towards °H5, in agreement with the conformations determined for the crystalline state. Analysis of the 1H-n.m.r. data for a series of 1,2:3,4-di-O-isopropyl-idene-α-d-galacto-octopyranose derivatives shows that the pyranoid parts of these compounds adopt the same conformation as that found for 3 and 4.  相似文献   

8.
By regulating the pH values, two new zinc(II) coordination polymers, formulated as [Zn4(μ7-CTAI)(μ3-OH)(μ2-OH)3(H2O)2]n·2n(H2O) (1), [Zn2(μ7-CTAII)(H2O)3]n (2) have been prepared by a flexible ligand, cyclohexane-1,2,4,5-tetracarboxylic acid (H4CTA) under hydrothermal conditions. Complex 1 exhibits a two-dimensional binodal (3,6)-connected topological network containing rare octanuclear zinc(II) clusters as the secondary building units (SBU1). Complex 2 displays a three-dimensional binodal (4,8)-connected topological network containing unusual Zn4(COO)6 secondary building units (SBU2). And importantly, the conformation of H4CTA in 1 exhibits (a,e,e,a) fashion and transforms to thermodynamically more stable conformation (e,a,e,e) type in 2 by pH-controlled. In addition, both of the complexes show strong photoluminescence at room temperature, and may be good candidates for potential luminescence materials.  相似文献   

9.
A conformational analysis of 2,3,4-tri-O-acetyl-D-xylono-1,5-lactone (5) has been performed by using 1H-n.m.r. spectral data. Evidence is presented that the C-3 and C-4 acetoxyl groups are anti-periplanar. The possible contribution of attractive 1,3- and 1,4-interactions between the electropositive lactone-ring oxygen and the endo-acetoxyl groups at C-3 and C-4 to the conformational stability of 5 is discussed.  相似文献   

10.
The ligand substitution reaction of Ru2(O2CCH3)4Cl with 2-amino-4,6-dimethylpyrimidine (Hadmpym) under gentle refluxing conditions in methanol led to the formation of a bridging-ligand mono-substituted compound, [Ru2(O2CCH3)3(admpym)(Cl)(MeOH)] (1). Compound 1 crystallized in monoclinic space group P21/n (no. 14) with a=8.3074(8) Å, b=12.3722(8) Å, c=18.913(1) Å, β=95.559(3)°, V=1934.8(3) Å3, and Z=4. Temperature dependence of the magnetic susceptibility of 1 revealed it to be in a spin ground state S=3/2 arising from the electronic configuration of σ2π4δ2(δ*π*)3. Compound 1 undergoes three metal-centered redox reactions in electrochemistry: E1/2 (ox)=+0.72 V (Ia/Ic<1, ΔEp=0.17 V); E1/2 (1,red)=−0.65 V (Ia/Ic≈1, ΔEp=0.10 V); and E1/2 (2,red)=−1.80 V (Ia/Ic?1, ΔEp=0.16 V). Then, the redox species produced by electrolysis were characterized by spectroscopic studies.  相似文献   

11.
《Carbohydrate research》1987,162(2):171-179
The crystal and molecular structures of methyl 2,4,6-tri-O-pivaloyl-α-d-glucopyranoside (1), methyl 4,6-O-(R)-benzylidene-2-O-pivaloyl-α-d-glucopyranoside (2), and methyl 4,6-O-(R)-benzylidene-2,3-di-O-pivaloyl-α-d-glucopyranoside (3) were determined by X-ray analysis. Crystals of 1 are orthorhombic, space group P212121 with the unit cell a = 13.026(2), b = 16.832, c = 11.929(2) Å, Z = 4. Crystals of 2 are monoclinic, space group P21. The unit-cell parameters are a = 6.519(1), b = 14.664(4), c = 10.635(4) Å, β = 93.18(1)°, Z = 2. Crystals of 3 are orthorhombic, space group P212121 with a = 10.006(3), b = 13.874(3), c = 18.527(5) Å, Z = 4. The structures were solved by MULTAN and refined by a full-matrix procedure to final values of R = 0.084 (1), 0.048 (2), and 0.069 (3). The pyranose ring in each compound adopts the 4C1 conformation. The 1,3-dioxane rings in 2 and 3 show a chair conformation. The molecular packing in 1 is through the hydrogen bonds involving HO-3 and the 6-O-pivaloyl carbonyl group [HO-3 ⋯ O-9, 2.855(8) Å], which connect the molecules into a chain along
. The endocyclic oxygen atom is involved in an intermolecular hydrogen-bond with HO-3 [2.848(4) Å], joining molecules of 2 into the chains along
. There are no free hydroxyl groups in 3 and molecular packing reflects van der Waals interactions only.  相似文献   

12.
The ligands 1-hydroxymethylpyrazole (hl1), 1-(2-hydroxyethyl)pyrazole (hl2) and 1-(3-hydroxypropyl)pyrazole (hl3) react with [PdCl2(CH3CN)2] to give trans-[PdCl2(hl)2] compounds. Due to a hindered rotation around the Pd-bond, these compounds present two different conformations in solution: anti and syn. The conformation presented depends on the relative disposition of the hydroxyalkylic chains of the two pyrazolic ligands. The present study was carried out on the basis of NMR experiments. The present paper reports the crystal structure of trans-[PdCl2(hl2)2]. The synthesis and characterisation of compounds [Pd(hl)4](BF4)2 (hl = hl1, hl2 and hl3) starting from [Pd(CH3CN)4](BF4)2 and the corresponding chlorocomplexes trans-[PdCl2(hl)2] are also described.  相似文献   

13.
Reaction of the N-alkylaminopyrazole (NNN) ligands bis[(3,5-dimethyl-1-pyrazolyl)methyl]ethylamine (bdmae) and bis[(3,5-dimethyl-1-pyrazolyl)methyl]isopropylamine (bdmai) with [PdCl2(CH3CN)2] in a 1:1 M/L ratio in CH2Cl2 produces cis-[PdCl2(NNN)] (NNN = bdmae (1), bdmai (2)). The solid state structure of complex 1 was determined by X-ray diffraction studies. The bdmae ligand is coordinated through the two Npz atoms to the metal atom, which completes its coordination with two chlorine atoms in a cis disposition.Treatment of the corresponding ligand with [PdCl2(CH3CN)2] in 1:1 M/L ratio in the presence of AgBF4 and metathesis with NaBPh4 in CH2Cl2/CH3OH (3:1) gave [PdCl(bdmae)](BPh4) (3), and in the presence of NaBPh4 in CH2Cl2/CH3CN (3:1) gave [PdCl(bdmai)](BPh4) (4). Complexes 1 and 2 were again obtained when complexes 3 and 4 were heated under reflux in a solution of Et4NCl in acetonitrile. These Pd(II) compounds were characterised by elemental analyses, conductivity measurements, IR, 1H and 13C{1H} NMR, HMQC and NOESY spectroscopies. The NMR studies of the complexes prove the rigid conformation of the ligands when they are complexed.  相似文献   

14.
A series of dimolybdenum complexes containing mixed formamidinate ligand are discussed. The reactions of trans-Mo2(O2CCH3)2(o-DMophF)2 [o-HDMophF=N,N-di(2-methoxyphenyl)formamidine] with N,N-di(2-pyridyl)formamidine (HDpyF), N,N-di(2-pyrimidyl)formamidine (HDpmF) and N,N-di(6-methyl-2-pyridyl)formamidine (HDMepyF), in refluxing CH2Cl2 afforded the complexes, trans-Mo2(O2CCH3)(DpyF)(o-DMophF)2 (1), trans-Mo2(O2CCH3)(DpmF)(o-DMophF)2 (2), and trans-Mo2(O2CCH3)(DMepyF)(o-DMophF)2 (3), respectively. The o-DMophF and DMepyF ligands in these complexes adopt the s-cis, s-trans conformation, resulting in Mo-O short distances [2.889 (3) and 2.861(2) Å for 1; 2.880(3) and 3.024(4) Å for 2], while the DpyF ligand adopts the s-cis, s-trans conformation, resulting in a Mo-N [3.208(4) Å] and a Mo-H [2.90 (3) Å] short distances. The reactions of trans-Mo2(O2CCH3)2(o-DMophF)2 with HDMepyF in CH3CN gave complexes 3, trans-Mo2(O2CCH3)(DMepyF)2(o-DMophF) (4), and trans-Mo2(DMepyF)2(o-DMophF)2 (5). The o-DMophF ligands in 4 and 5 adopt the s-cis, s-cis conformation while DMepyF assumes an s-cis, s-trans conformation. Complexes 1-5 are the first dimolybdenum complexes containing mixed formamidinate ligands.  相似文献   

15.
Coordination polymers Cu(l-Pro)(ClO4)(H2O)2 (1) and Cu3(Gly)4(H2O)2(NO3)2 (2) were synthesized and characterized structurally. Compound 1 possesses the structure of 1D chain, where Cu(II) ions are linked by carboxyl-group in syn-anti conformation in equatorial-equatorial mode. Compound 2 is polymeric chain, consisting from trinuclear blocks Cu3(Gly)4(H2O)22+. In each of these units Cu(II) ions are linked by carboxyl-group in the same way as in 1, while trinuclear units Cu3(Gly)4(H2O)22+ are linked by NO3 ions, acting as the bridges between Cu(II) ions of neighboring trinuclear units. Circular dichroism properties of 1 were studied in solid state and solution. Magnetic measurements revealed that there were ferromagnetic exchange interactions between Cu(II) ions in 1 (J = +1.22(1) cm-1 for Hamiltonian ) and 2 (J = +1.17(2) cm-1 for Hamiltonian ).  相似文献   

16.
Three new Mn(II) complexes [Mn(HnicO)2(H2O)2] (1), [Mn2(HnicO)2SO4(H2O)2]n (2), and [NaMn(HnicO)3]n (3) (H2nicO = 2-hydroxynicotinic acid) have been synthesized and determined by X-ray diffraction. For complex 1, the mononuclear units with two bidentate HnicO ions and two water molecules are assembled into a 3D architecture via hydrogen bonding and π-π interactions. For 2, Mn(II) ions are connected by μ3-HnicO and bridging ligands, producing a 2D (6,3) coordination network. For 3, binuclear Na(I)-Mn(II) units with three carbonyl oxygen bridges are interlinked by carboxylate groups, resulting in a 3D 6-connected coordination network with distorted α-Po topology. The magnetic properties of 2 are discussed.  相似文献   

17.
The syntheses and structural characterization of four cobalt(II)-salicylate complexes, [(TPA)CoII(HSA)](ClO4) (1), [(isoBPMEN)CoII(HSA)](BPh4) (2), [(TPzA)CoII(HSA)](ClO4) (3) and [(6Me3TPA)CoII(HSA)](BPh4) (4) [TPA = tris(2-pyridylmethyl)amine, isoBPMEN = N1,N1-dimethyl-N2,N2-bis(2-pyridylmethyl)ethane-1,2-diamine, TPzA = tris((3,5-dimethyl-1H-pyrazole-1-yl)methyl)amine and 6Me3TPA = tris(6-methyl-2-pyridylmethyl)amine] are described. While 2, 3 and 4 are unreactive towards dioxygen, 1 reacts slowly with molecular oxygen to a cobalt(III)-salicylate complex, [(TPA)CoIII(SA)](ClO4) (1a). Two different crystalline forms, 1a and 1a·4H2O were isolated depending upon the condition of oxidation and crystallization. The solid-state structures of cobalt(III)-salicylate unit in both 1a and 1a·4H2O show a six-coordinate distorted octahedral coordination geometry at the cobalt(III) center ligated by the tetradentate ligand (TPA) where the dianionic salicylate (SA) binds in a bidentate fashion through one carboxylate and one phenolate oxygen. The hydrated form 1a·4H2O reveals a hexameric water cluster formation in the inorganic lattice host. The complex cation and the perchlorate counterion are involved in stabilizing the (H2O)6 cluster in a rare ‘pentamer planar+1’ conformation. A one-dimensional water tape consisting of edge-shared water hexamers is observed. The water tape represents a subunit of ice structure.  相似文献   

18.
The tautomeric composition of a solution of ammonium 3-deoxy-d-manno-octulosonate (KDO, 1a) in D2O at 28° was assessed by means of 13 C-F.t.-n.m.r. spectroscopy. The results revealed the presence of 6?0 and 11 % of the α and β anomers of the pyranose, and 20 and 9 % of the two furanoses, and suggested, but did not unequivocally prove, that the major furanose form is the α anomer. To facilitate interpretation of the spectral results for 1, ammonium 3,5-dideoxy-d-arabino(or ribo)-octulosonate (3a) was prepared by the reaction of 5-deoxy-d-erythro-pentose with sodium oxalacetate at pH 11. A chromatographically homogeneous, noncrystalline sample of 3 was obtained by lyophilization, and characterized as its (4-nitrophenyl)hydrazone (m.p. 162-163°). The 13C-n.m.r. spectrum of a solution of 3a in D2O revealed it to be substantially all in the α-pyranose form. No signals were obtained for the possible 1,4-lactone of 3. As the 1,5-lactone and furanose forms are impossible for 3, it exhibited no signals analogous to those attributed to furanoid 1. On the basis of these results for 3, the two lactone forms of 1 were excluded from consideration, and the three pairs of 13C-n.m.r. signals observed at ≈45, 86, and 104 p.p.m. were assigned to the furanose forms of 1.  相似文献   

19.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

20.
Four coordination polymers based on AgI/3-sulfobenzoate/N-donor ligands, [Ag2Na2(3-sb)2(H2O)7]n (1), {[Ag2(3-sb)(apy)]·(H2O)}n (2), {[Ag2(4,4′-bipy)2(H2O)3]·[Ag2(4,4′-bipy)2(H2O)2]·2(3-sb)·4(H2O)}n (3) and {[Ag(3-sb)(bpe)(H2O)][Ag(bpe)(H2O)]·3(H2O)}n (4) where 3-sb is 3-sulfobenzoate, apy is 2-aminopyridine, bipy is 4,4′-bipyridine and bpe is 1,2-bis(4-pyridyl)ethylene, were prepared and characterized, and their fluorescence and electric conductivity properties were studied. Complex 1 is a 3D architecture in which 3-sb ligands exhibit μ41(O1,O2-Ag): κ1(O3,O5-Na) trans-trans coordination mode. The molecular structure of 2 is a 2D layer. Complexes 3 and 4 are cation-anion species and 1D polymers. In these complexes hydrogen bonds provide additional assembly forces, giving 3D hydrogen bonding networks for 1 and 3, and 2D layers for 2 and 4. Abundant weak interactions, such as Ag-Ag interactions in 1-3, Ag-π interactions in 1-4, π-π interactions in 1, 3-4, and C-H···π interactions in 3-4, also can be found. The weak interactions are strongly related to the fluorescence and electric conductivity properties, providing the way for understanding the relationship between structures and properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号