首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polysaccharide of the mucin secreted by the leaves of Drosera capensis is composed of l-arabinose, d-xylose, d-galactose, d-mannose, and d-glucuronic acid in the molar ratio of 3.6:1.0:4.9:8.4:8.2. For structural elucidation, methylation analysis using g.l.c. and g.l.c.-m.s. was performed on the native, the carboxyl-reduced, and the degraded polysaccharides. Partial hydrolysis, periodate oxidation, chromium trioxide oxidation, and uronic acid degradation were also performed on the native and carboxyl-reduced polysaccharides. Partial hydrolysis of the native and carboxyl-reduced polysaccharides gave various oligosaccharides that were characterized and suggest a structure containing a d-glucurono-d-mannan backbone having a repeating unit → 4)-β-d-GlcpA-(1 → 2)-α-d-Manp-(1 →. l-Arabinose and d-xylose are present as nonreducing furanosyl and pyranosyl end-groups, respectively, both attached to O-3 of d-glucuronic acid residues of the backbone. d-Galactose is present as non-reducing pyranosyl end-group linked to O-3 of d-mannose residues.  相似文献   

2.
Sapote gum contains residues of L-arabinose (pyranose and furanose), D-xylose, D-glucuronic acid, and 4-O-methyl-D-glucuronic acid in the ratio 1.0:2.8:0.48:0.52. The two uronic acids were conveniently determined by reducing the carboxyl functions with lithium borohydride and measuring the ratio of D-glucose to 4-O-methyl-D-glucose. Periodate oxidation of the carboxyl-reduced gum gave inter alia 2-O-methyl-D-erythritol and 4-O-methyl-D-glucose in amounts suggesting that 37% of the 4-O-methyl-D-glucuronic acid residues are unsubstituted in the polysaccharide. Acetolysis of the carboxyl-reduced gum gave O-α-D-glucopyranosyl-(1→2)-(4-O-β-D-xylopyranosyl)0,1,2,-D-xylose, a hitherto undescribed series of oligosaccharides, together with 2-O-(4-O-methyl-α-D-glucopyranosyl)-D-xylose. Methylation confirmed that sapote gum has a highly branched structure, and commercial xylanases did not depolymerize the gum. An α-L-arabinofuranosidase liberated a substantial part of the arabinose residues. Sapote gum is a member of the uncommon class of plant gums having a D-xylose backbone and structurally resembles brea gum.  相似文献   

3.
Autohydrolysis of an aqueous solution of purified, exudate gum from Spondias dulcis trees yielded a degraded gum containing d-galactose, l-arabinose, and d-galacturonic acid in the mole ratios of 3:3:1. Methylation studies were conducted on the degraded gum and its carboxyl-reduced derivative. Three neutral and three acidic oligosaccharides were obtained on graded hydrolysis of the degraded gum, and these were characterized. Based on the results, a tentative structure was proposed for the repeating unit in the polysaccharide. The results of periodate oxidation supported the structure assigned. The anomeric configurations of the sugar residues were determined by studies of oxidation with chromium trioxide.  相似文献   

4.
《Carbohydrate research》1986,146(2):279-305
Rhamnogalacturonan II (RG-II) is a structurally complex pectic (d-galactosyl-uronic acid-rich) polysaccharide that is present in the primary (growing) cell-walls of higher plants. RG-II is composed of ∼60 glycosyl residues. The isolation and structural characterization of 23 oligosaccharide fragments of the residue of RG-II that remained after removal of hepta- and di-saccharides by partial hydrolysis with acid are reported. In order to obtain the oligosaccharide fragments characterized herein, the carboxyl groups of RG-II were dideuterio-reduced, and the carboxyl-reduced polysaccharide was per-O-methylated. The per-O-methylated polysaccharide was fragmented by partial hydrolysis with acid, producing partially O-methylated oligosaccharides. These derivatized oligosaccharides were reduced, to afford a mixture of partially O-methylated oligoglycosyl-alditols, which was then per-O-methylated. The structures of the resulting per-O-methylated oligoglycosylalditols were determined by chemical-ionization mass spectrometry, electron-impact mass spectrometry, fast-atom-bombardment mass spectrometry, 1H-n.m.r. spectroscopy, and analysis of corresponding, partially O-acetylated, partially O-methylated alditols. Seventeen of the oligosaccharides isolated from RG-II were parts of a single heptasaccharide, namely.  相似文献   

5.
《Carbohydrate research》1986,153(1):97-106
The mucilage found in the stem pith of Actinidia deliciosa contains d-glucuronic acid, d-mannose, l-fucose, l-arabinose, and d-galactose in the molar ratios 1.0:1.5:2.0:4.0. The native, carboxyl-reduced, and partially acid-hydrolysed polysaccharides were subjected to methylation analysis. Partial acid hydrolysis of the methylated, carboxyl-reduced glucuronomannan core produced a series of methylated oligosaccharides which, as their alditol derivatives, were isolated by reverse-phase h.p.l.c. and characterised by e.i.- and f.a.b.-m.s. The data suggest that the polysaccharide contains a →4)-β-d-GlcpA-(1→2)-α-d-Manp-(1→ backbone with most of the d-mannosyl and d-glucosyluronic acid residues substituted through positions 3 with oligosaccharides containing l-arabinose, α-l-fucose, and β-d-galactose.  相似文献   

6.
An aldotriouronic acid was isolated from the acid hydrolyzate of the polysaccharide from Klebsiella Type 61 (K-61), and its structure was established. Degradation of the permethylated polysaccharide with base established the identity of the sugar unit preceding the glucosyluronic acid residue. The modes of linkage and the sequence of different sugar residues were further confirmed by Smith degradation of K-61. The anomeric configurations of the difierent sugar residues were determined by oxidation of peracetylated native, and carboxyl-reduced, polysaccharides with chromium trioxide. The anomeric configuration of nonreducing D-galactosyl side-chains was further confirmed by enzymic degradation of K-61. Finally, gentiobiose was identified in the partial, acid hydrolyzate of K-61. Based on these results, the structure assigned the repeating unit of K-61 was as follows.
  相似文献   

7.
The capsular polysaccharide from Klebsiella Serotype K40 contains D-galactose, D-mannose, L-rhamnose, and D-glucuronic acid in the ratios of 4:1:1:1. Methylation analysis of the native and carboxyl-reduced polysaccharide provided information about the glycosidic linkages in the repeating unit. Degradation of the permethylated polymer with base established the identity of the sugar unit preceding the glycosyluronic acid residue. The modes of linkages of different sugar residues were further confirmed by Smith degradation and partial hydrolysis of the K40 polysaccharide. The anomeric configurations of the different sugar residues were determined by oxidation of the peracetylated native and carboxyl-reduced polysaccharide with chromium trioxide. Based on all of these results, the heptasaccharide structure 1 was assigned to the repeating unit of the K40 polysaccharide. (Formula: see text)  相似文献   

8.
The purified, whole-gum exudate from the drum-stick plant (Moringa oleifera) was found to contain l-arabinose, d-galactose, d-glucuronic acid, l-rhamnose, d-mannose, and d-xylose in the molar ratios of ~ 14.5:11.3:3:2:1:1. A homogeneous, degraded-gum polysaccharide consisting of d-galactose, d-glucuronic acid, and d-mannose in the molar ratios of ~ 11.7:3.9:1, was obtained on mild hydrolysis of the whole gum with acid. Permethylation studies were conducted on the whole gum, the degraded gum, and their carboxyl-reduced products, and the results were in good agreement with those obtained from periodate oxidation followed by Smith degradation. Also, isolation and characterization of the oligosaccharides obtained from the mother liquor during preparation of the degraded gum, and by graded hydrolysis of the degraded gum, were achieved. On the basis of the results obtained from these studies, a tentative structure was assigned to the average repeating-unit of the gum.  相似文献   

9.
The water-soluble polysaccharide from Pterospermum suberifolium gum is composed of l-rhamnose (24.0%), d-glucose (5.6%), d-galacturonic acid (32.4%), and d-glucuronic acid (19.7%), and it precipitated 77% of the antibody nitrogen from anti-Pneumococcal Type XXIII serum. From the results of methylation, periodate oxidation, and partial hydrolysis studies on the gum and its carboxyl-reduced product, a structure was assigned to its repeating unit. Inhibition of the cross-precipitation using the monosaccharides and the oligosaccharides obtained from the polysaccharide indicated that l-rhamnose and d-glucose were immunospecific, the former to the greater extent.  相似文献   

10.
A homogeneous sulfated heterorhamnan was obtained by aqueous extraction, then by ultrafiltration from the green seaweed Gayralia oxysperma. Besides α-l-rhamnose it contains glucuronic and galacturonic acids, xylose and glucose. The structure was established by methylation analyses of the carboxyl-reduced, carboxyl-reduced/desulfated, carboxyl-reduced/Smith-degraded, and carboxyl-reduced/Smith-degraded/desulfated products and 1D, 2D NMR spectroscopy analyses. The heterorhamnan backbone is constituted by 3- and 2-linked rhamnosyl units (1.00:0.80), the latter being ∼50% substituted at C-3 by side chains containing 2-sulfated glucuronic and galacturonic acids and xylosyl units. The 3- and 2-linked rhamnosyl units are unsulfated (20%), disulfated (16%), and mostly monosulfated at C-2 (27%) and C-4 (37%). The branched and sulfated heterorhamnan had high and specific activity against herpes simplex virus.  相似文献   

11.
The polysaccharide composition of bark from Pinus radiata, Salix fragilis, and Populus euramericana has been determined. All the barks contained lower levels of cellulose and hemicellulose than the corresponding woods; cellulose: hemicellulose ratios were also lower in the barks. Alkali extracted all of the hemicellulose-A but only half of the hemicellulose-B from P. radiata bark without prior delignification. Similar alkaline extraction removed almost all of the hemicellulose (A + B) from ryegrass leaves without delignification. With the other samples tested only a part of the hemicellulose A and B is extracted without delignification. It is suggested that the polysaccharide so extracted represents wall hemicellulose which is not linked to lignin or other wall constituents by alkali-stable links.  相似文献   

12.
A pectin isolated from rapeseed, hulls by extraction with aqueous ammonium oxalate, had a degree of esterification of 83% and contained residues of hexuronic (mainly D-galacturonic) acid (76%), D-galactose (2–3%), L-arabinose (8–9%), D-xylose (2%), L-rhamnose (2–3%), and L-fucose (1%). Partial acid hydrolysis of the derived pectic acid furnished 2-O-(α-D-galactopyranosyluronic acid)-L-rhamnose, 4-O-(α-D-galactopyranosyluronic acid)-D-galacturonic acid and the polymer-homologous tri- and tetrasaccharides, and 4-O-(glucopyranosyluronic acid)-L-fucose. The cleavage products from the methylated pectin were examined by g.l.c. and the partially methylated alditol acetates from the methylated carboxyl-reduced polysaccharide by g.l.c.-mass spectrometry. Parallel methylation studies on lemon-peel pectin have established a close similarity between the two pectins.  相似文献   

13.
Klebsiella K23 capsular polysaccharide has been investigated by the techniques of hydrolysis, methylation, Smith degradation-periodate oxidation, and base-catalysed degradation, either on the original or the carboxyl-reduced polysaccharide. The structure was found to consist of a tetrasaccharide repeating-unit, as shown below. The anomeric configurations of the sugar residues were determined by 1H-and 13C-n.m.r. spectroscopy on the original and degraded polysaccharides.
  相似文献   

14.
Proton magnetic resonance has been used to monitor the microscopic physical properties of etiolated hypocotyl cell walls from Phaseolus vulgaris L. at all stages in a series of chemical fractionations with ammonium oxalate and potassium hydroxide. Solid echo measurements indicate that 75% of the polymers in the intact cell wall, including the cellulose and most of the hemicelluloses, are arranged such that there is almost complete restraint of molecular motion. The chemical fractionations generally altered the physical structures of the remaining cell wall components. Digestion with 0.25% ammonium oxalate/oxalic acid solubilized the pectin and increased the mobility of the hemicellulose I component. Extraction with 4% potassium hydroxide removed the hemicellulose I component and loosened the hemicellulose II. Further extraction with 24% potassium hydroxide removed the hemicellulose II and loosened some of the cellulose. The cellulose crystallinity, as monitored by Jeener echo measurements decreased from 83% to 63% during these fractionations. We conclude that, while hemicellulose I is firmly attached to hemicellulose II, it is not in a closely packed structure. Hemicellulose II is strongly bound to cellulose and has a much more closely packed structure.  相似文献   

15.
The manganese peroxidase (MnP) of Phanerochaete chrysosporium supported Mn(II)-dependent, H2O2-independent lipid peroxidation, as shown by two findings: linolenic acid was peroxidized to give products that reacted with thiobarbituric acid, and linoleic acid was peroxidized to give hexanal. MnP also supported the slow oxidation of phenanthrene to 2,2′-diphenic acid in a reaction that required Mn(II), oxygen, and unsaturated lipids. Phenanthrene oxidation to diphenic acid by intact cultures of P. chrysosporium occurred to the same extent that oxidation in vitro did and was stimulated by Mn. These results support a role for MnP-mediated lipid peroxidation in phenanthrene oxidation by P. chrysosporium.  相似文献   

16.
The acidic sugar component in the Klebsiella type 37 capsular polysaccharide (K 37) has been identified as 4-O-[(S)-1-carboxyethyl]-D-glucuronic acid. The identification is based upon chemical and spectroscopic studies, and the identity of the carboxyl-reduced sugar, 4-O-[(S)-2-(1-hydroxy)propyl]-D-glucose and derivatives, with the corresponding substances synthesized by an unambiguous route.  相似文献   

17.
Hemicellulose was extracted from horse bean and wheat straws in a yield of 5 and 9% respectively. The whole hemicellulose was hydrolysed and the molar ratio of the component monosaccharides was determined. Uronic acid, galactose, glucose, arabinose and xylose were found in both hemicelluloses. The molar ratio of the monosaccharides was determined in each of 4 fractions derived from the saccharide. The main fractions (B and C) were partially hydrolysed and an oligosaccharide containing arabinose and xylose (1:1) was isolated from both hemicelluloses. Another oligosaccharide containing xylose and glucose (2:1) was also isolated from wheat straw hemicellulose. Periodate oxidation was carried out on fractions B and C. The formic acid and the consumed periodate were determined. Each hemicellulose was subjected to Smith's degradation. Glycerol, erythrytol and compounds containing xylose and glycerol (1:1), and xylose and erythrytol (1:1) were isolated.  相似文献   

18.
Methylation analysis of and partial hydrolysis studies on the Klebsiella K7 capsular polysaccharide and its carboxyl-reduced derivative indicated the recurrence of D-glucopyranuronic acid, D-mannopyranose, and D-glucopyranose residues, linearly linked in a specific manner, in the molecular structure. D-Galactopyranose and pyruvic acid residues are linked to the main chain on the D-mannose residues (at O-3) and the D-glucose residues (at O-4 and O-6), respectively; the simplest interpretation of this evidence is that nine sugar residues and pyruvic acid constitute a repeating unit. The sequence →3)-β-D-GlcAp-(1→2)-α-D-Manp-(1→2)-α-D-Manp-(1→3)-D-Glcp→ was demonstrated by the isolation from the polysaccharide of an aldotetraouronic acid of this structure.  相似文献   

19.
Bacteria belonging to the Roseobacter clade of the α-Proteobacteria occupy a wide range of environmental niches and are numerically abundant in coastal waters. Here we reveal that Roseobacter-like bacteria may play a previously unrecognized role in the oxidation and cycling of manganese (Mn) in coastal waters. A diverse array of Mn(II)-oxidizing Roseobacter-like species were isolated from Elkhorn Slough, a coastal estuary adjacent to Monterey Bay in California. One isolate (designated AzwK-3b), in particular, rapidly oxidizes Mn(II) to insoluble Mn(III, IV) oxides. Interestingly, AzwK-3b is 100% identical (at the 16S rRNA gene level) to a previously described Pfiesteria-associated Roseobacter-like bacterium, which is not able to oxidize Mn(II). The rates of manganese(II) oxidation by live cultures and cell-free filtrates are substantially higher when the preparations are incubated in the presence of light. The rates of oxidation by washed cell extracts, however, are light independent. Thus, AzwK-3b invokes two Mn(II) oxidation mechanisms when it is incubated in the presence of light, in contrast to the predominantly direct enzymatic oxidation in the dark. In the presence of light, production of photochemically active metabolites is coupled with initial direct enzymatic Mn(II) oxidation, resulting in higher Mn(II) oxidation rates. Thus, Roseobacter-like bacteria may not only play a previously unrecognized role in Mn(II) oxidation and cycling in coastal surface waters but also induce a novel photooxidation pathway that provides an alternative means of Mn(II) oxidation in the photic zone.  相似文献   

20.
An extra-cellular endo-hemicellulase (HC-II) from a culture isolate of the fungal plant pathogen Ceratocystis paradoxa (CP2) was purified 147-fold by ammonium sulphate precipitation, DEAE-Sephadex chromatography, iso-electric focusing at pH 3–10, and gel-permeation chromatography. The resulting enzyme preparation, which contained traces of invertase, gave a single protein-band on disc electrophoresis at pH 8.4, and was active towards sucrose, hemicellulose, and carboxymethylcellulose (CMC). HC-II randomly degraded hemicelluloses from several different sources, to xylose and to arabinose-xylose and xylose oligosaccharides of d.p. 3–6 and 2–5, respectively, and also produced a degraded hemicellulose which precipitated from the digest solution. The precipitated hemicellulose contained less arabinose and uronic acid than the original hemicellulose. When redissolved by alkali-treatment, it was susceptible to further degradation by hemicellulases HC-I and HC-II. CMC was degraded by HC-II, mainly to D-glucose and cellobiose, with trace amounts of unidentified higher oligosaccharides, while cellobiose remained unattacked. Xylotriose (Xyl3) was the lowest homologue of the xylose oligosaccharides attacked by HC-II at a significant rate, yielding xylobiose [Xyl2; β-D-Xylp-(1→4)-D-Xyl] and xylose. AraXyl3AraXyl5 were mainly hydrolysed to AraXyl2, xylose, and Xyl2 or Xyl3. HC-II had a temperature optimum of 80°, and was stable for 1 h at temperatures up to 70°. The pH optimum was 5.1, and HC-II was stable between pH 5–10. The Km was 0.267 mg of hemicellulose B/ml. The effects of mercury(II) ions and high concentrations of xylose on the activity of HC-II were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号