首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An essential feature of proposed fermentation-based lignocellulose to biofuel conversion processes will be the co-production of higher value chemicals from lignin and hemicellulose components. Over the years, many routes for chemical conversion of lignin and hemicelluloses have been developed by the pulp and paper industry and we propose that some of these can be applied for bioproducts manufacturing. For lignin products, thermochemical, chemical pulping, and bleaching methods for production of polymeric and monomeric chemicals are reviewed. We conclude that peroxyacid chemistry for phenol and ring-opened products looks most interesting. For hemicellulose products, preextraction of hemicelluloses from woody biomass is important and influences the mixture of solubilized material obtained. Furfural, xylitol, acetic acid, and lactic acid are possible targets for commercialization, and the latter can be further converted to acrylic acid. Pre-extraction of hemicelluloses can be integrated into most biomass-to-biofuel conversion processes.  相似文献   

2.
Seed storage hemicelluloses as wet-end additives in papermaking   总被引:7,自引:0,他引:7  
Xyloglucans and galactomannans are examples of hemicelluloses that can be accumulated in seeds of many plants, being extensively studied and used for industrial applications. Guar gum and starch are polysaccharides currently used as wet-end additives in papermaking, whereas xyloglucans have never been reported to improve paper quality. In this work we show that different types of xyloglucans improved the mechanical properties of paper sheets without affecting the optical ones. Addition of 1% (w/w) of hemicelluloses to cellulosic pulp was able to increase by about 30% the mechanical properties such as burst and tear indexes. Seeds of several species could be used as source for the production of wet-end additives, since the results did not vary with the source of polysaccharides. Even if the utilisation of these hemicelluloses will not cost less than starch or guar gum, it might represent an important strategy for sustainable use of rainforest species.  相似文献   

3.
The conversion of biomass to chemicals and energy is imperative to sustaining our way of life as known to us today. Fossil chemical and energy sources are traditionally regarded as wastes from a distant past. Petroleum, natural gas, and coal are not being regenerated in a sustainable manner. However, biomass sources such as algae, grasses, bushes and forests are continuously being replenished. Woody biomass represents the most abundant and available biomass source. Woody biomass is a reliably sustainable source of chemicals and energy that could be replenished at a rate consistent with our needs. The biorefinery is a concept describing the collection of processes used to convert biomass to chemicals and energy. Woody biomass presents more challenges than cereal grains for conversion to platform chemicals due to its stereochemical structures. Woody biomass can be thought of as comprised of at least four components: extractives, hemicellulose, lignin and cellulose. Each of these four components has a different degree of resistance to chemical, thermal and biological degradation. The biorefinery concept proposed at ESF (State University of New York — College of Environmental Science and Forestry) aims at incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. The emphasis of this work is on the kinetics of hot-water extraction, filling the gap in the fundamental understanding, linking engineering developments, and completing the first step in the biorefinery processes. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers and acetic acid in the extract are the major components having the greatest potential value for development. Extraction/hydrolysis involves at least 16 general reactions that could be divided into four categories: adsorption of proton onto woody biomass, hydrolysis reactions on the woody biomass surface, dissolution of soluble substances into the extraction liquor, and hydrolysis and dehydration decomposition in the extraction liquor. The extraction/hydrolysis rates are significantly simplified when the reactivity of all the intermonomer bonds are regarded as identical within each macromolecule, and the overall reactivity are identical for all the extractable macromolecules on the surface. A pseudo-first order extraction rate expression has been derived based on concentrations in monomer units. The reaction rate constant is however lower at the beginning of the extraction than that towards the end of the extraction. Furthermore, the H-factor and/or severity factor can be applied to lump the effects of temperature and residence time on the extraction process, at least for short times. This provides a means to control and optimize the performance of the extraction process effectively.  相似文献   

4.
Water-based woody biorefinery   总被引:1,自引:0,他引:1  
The conversion of biomass into chemicals and energy is essential in order to sustain our present way of life. Fossil fuels are currently the predominant energy source, but fossil deposits are limited and not renewable. Biomass is a reliable potential source of materials, chemicals and energy that can be replenished to keep pace with our needs. A biorefinery is a concept for the collection of processes used to convert biomass into materials, chemicals and energy. The biorefinery is a “catch and release” method for using carbon that is beneficial to both the environment and the economy. In this study, we discuss three elements of a wood-based biorefinery, as proposed by the SUNY College of Environmental Science and Forestry (ESF): hot-water extraction, hydrolysis, and membrane separation/concentration. Hemicelluloses are the most easily separable main component of woody biomass and thus form the bulk of the extracts obtained by hot-water extraction of woody biomass. Hot-water extraction is an important step in the processes of woody biomass and product generation, replacing alternative costly pre-treatment methods. The hydrolysis of hemicelluloses produces 5-carbon sugars (mainly xylose), 6-carbon sugars (mainly glucose and mannose), and acetic acid. The use of nano-filtration membranes is an efficient technology that can be employed to fractionate hot-water extracts and wood hydrolysate. The residual solid mass after hot-water extraction has a higher energy content and contains fewer easily degradable components. This allows for more efficient subsequent processing to convert cellulose and lignin into conventional products.  相似文献   

5.
Autohydrolysis is a hot water pretreatment to extract soluble components from wood that can be used prior to converting the woody residuals into paper, wood products, fuel, or other goods. In this study, mixed softwood chips were autohydrolyzed in hot water at 150, 160, 170, and 180 °C for 1 and 2 h residence times. The objective was to understand the tradeoff between the extraction of fermentable sugar and the residual solid total energy of combustion quantitatively. This process strategy will be referred to as “value prior to combustion”. High-performance liquid chromatography was used to determine chemical compositions (sugars and byproducts such as acetic acid, furfural, and hydroxymethylfurfural) of the extracted liquid and residuals; a bomb calorimeter was used to measure the heating value of original wood and solid residue. As the autohydrolysis temperature increased, material balances of the system indicated higher volatile byproducts loss. More hemicelluloses were solubilized by the hot water extraction process at higher temperatures and longer residence times, and a greater degree of sugar degradation was also observed. The maximum sugar yield was determined to occur at conditions of 170 °C for 2 h, during which 13 g of sugar was recovered from the extract out of 100 g of oven-dried wood. The heating value of the solid residues after extraction was greater than the original wood. The total energy content of the solid residual after extraction ranged from 85 to 98 % of the original energy content of the feed with higher temperatures reducing the total energy content.  相似文献   

6.
Yeast was processed by means of different technical drying procedures, heating in water suspension, and mechanical disintegration. The influence on the ultrastructure, the nutritive value and on the availability of the cell nitrogen-containing compounds to chemical extractants was studied. On micrographs no cell wall disrupture could be observed after any of the heat treatments. The internal cell structure was affected at the higher temperatures. After drum drying this structure was destroyed to a large extent. The heat treatments increased the nutritive value compared to unheated yeast cells but did not increase the availability of the cell content to chemical extractants. Mechanical disintegration increased both the nutritive value and the availability to chemical extractants. Heat processes and mechanical disintegration give high nutritive value to the yeast. Mechanical disintegration is advantageous when processing steps such as extraction with chemicals are necessary for obtaining specific protein products.  相似文献   

7.
Existing data indicate that chemicals freshly added to soils are more amenable to losses, including biodegradation, than chemicals that have been in contact with soils for extended periods of time. This review presents the results of studies that indicate that increased soil‐chemical contact time increased the resistance of chemicals to desorption, volatilization, biodegradation, and extraction. Thus, results from studies conducted on chemicals freshly added to soils should not be used to predict the behavior of chemicals that have been in contact with soils for extended periods of time. In addition, a measure of the total chemical concentration present in a soil does not adequately indicate the availability of the chemicals for biodegradation or release, and does not indicate the potential for the chemical to be transported to and have an adverse effect on a human or ecological receptor.  相似文献   

8.
Alkaline pretreatment of spruce at low temperature in both presence and absence of urea was studied. It was found that the enzymatic hydrolysis rate and efficiency can be significantly improved by the pretreatment. At low temperature, the pretreatment chemicals, either NaOH alone or NaOH-urea mixture solution, can slightly remove lignin, hemicelluloses, and cellulose in the lignocellulosic materials, disrupt the connections between hemicelluloses, cellulose, and lignin, and alter the structure of treated biomass to make cellulose more accessible to hydrolysis enzymes. Moreover, the wood fiber bundles could be broken down to small and loose lignocellulosic particles by the chemical treatment. Therefore, the enzymatic hydrolysis efficiency of untreated mechanical fibers can also be remarkably enhanced by NaOH or NaOH/urea solution treatment. The results indicated that, for spruce, up to 70% glucose yield could be obtained for the cold temperature pretreatment (-15 degrees C) using 7% NaOH/12% urea solution, but only 20% and 24% glucose yields were obtained at temperatures of 23 degrees C and 60 degrees C, respectively, when other conditions remained the same. The best condition for the chemical pretreatment regarding this study was 3% NaOH/12% urea, and -15 degrees C. Over 60% glucose conversion was achieved upon this condition.  相似文献   

9.
Fractional purification and bioconversion of hemicelluloses   总被引:1,自引:0,他引:1  
Hemicelluloses are types of plant cell wall polysaccharides, and the world's second most abundant renewable polymers after cellulose in lignocellulosic materials. They represent a type of hetero-polysaccharide with complex structure containing glucose, xylose, mannose, galactose, arabinose, rhamnose, glucuronic acid, and galacturonic acid in various amounts, depending on the source. Hemicelluloses are usually bonded to other cell-wall components such as cellulose, cell-wall proteins, lignin, and phenolic compounds by covalent and hydrogen bonds, and by ionic and hydrophobic interactions. This paper provides a review on hemicelluloses from lignocellulosic materials, especially in regard to their isolation and purification methods, and bioconversion. Current isolation and purification strategies are summarized, including: alkali peroxide extraction, organic solvent extraction, steam explosion, ultrasound-assisted extraction, microwave-assisted extraction, column chromatography, and membrane separation. In addition, the bioconversion of hemicelluloses including pretreatment, enzymatic hydrolysis, and fermentation are discussed.  相似文献   

10.
《Biotechnology advances》2017,35(6):726-750
Softwood bark is an important source for producing chemicals and materials as well as bioenergy. Extraction is regarded as a key technology for obtaining chemicals in general, and valorizing bark as a source of such chemicals in particular. In this paper, properties of 237 compounds identified in various studies dealing with extraction of softwood bark were described. Finally, some challenges and perspectives on the production of chemicals from bark are discussed.  相似文献   

11.
Four hemicelluloses and cellulose fractions were extracted with 10% KOH or 7.5% NaOH at 15°C for 16 h and with 24% KOH or 17.5% NaOH at 15°C for 2 h from defatted, protein and pectin free, lignified or delignified sugar beet pulp (SBP). There was no significant difference in the yield and sugar composition of isolated hemicelluloses and cellulose obtained from four different procedures. 7.5% NaOH extraction at 15°C for 16 h from lignified SBP gave a slightly higher yield of hemicelluloses (10.96%), while 24% KOH extraction at 15°C for 2 h from delignified SBP produced the highest yield of cellulose (18.35%). Molecular-average weights ranged from 88 850 to 91 330 Da for the hemicelluloses obtained from lignified SBP, and 21 620–21 990 Da for the hemicelluloses isolated from delignified SBP. The neutral sugar composition of the hemicelluloses consisted of glucose, arabinose, galactose, xylose, and minor quantities of rhamnose and mannose. The infrared spectra showed an absorption band at 900 cm−1, indicating some amounts of β-linked polysaccharides. Besides ferulic and p-coumaric acids, six other phenolics were also identified in the mixture of alkaline nitrobenzene oxidation of associated lignin in the isolated hemicelluloses and cellulose fractions.  相似文献   

12.
Many evaluations estimating safe levels of hydrophobic organic chemicals in sediments do not account for confounding factors such as physical habitat quality or covariance among chemicals. Controlled experiments demonstrating cause and effect can be conducted with spiked sediment toxicity tests, but application of this methodology has been limited in part by concerns about chemical bioavailability and challenges in achieving target concentrations. Relevant literature was reviewed to assess the utility of standardizing sediment equilibration times; hydrophobicity, complex sediment characteristics, and temperature were identified as potentially equally important factors. Disequilibrium appears likely following limited equilibration time but should yield conservative toxicity test results relative to aged field sediments. Nominal and measured concentrations in over 20 published studies were compared to assess spiked chemical recovery (i.e., measured concentration/nominal concentration). Recovery varied substantially among studies and was not readily predictable based on spiking or extraction method, chemical properties, or measured sediment characteristics, although unmeasured differences between sediments appeared to be important. Factors affecting specific studies included chemical adsorption to glassware, biodegradation, and volatilization. Pre- and post-toxicity test analyses are recommended to confirm exposure concentrations. Studies with 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2,3,7,8-TCDD) and hexachlorobenzene (HCB) exemplify the utility of verifying results of field studies using spiked sediment tests. Sediments spiked with these chemicals at concentrations greatly exceeding those in associated field studies caused no adverse effects in test organisms, demonstrating that other chemicals co-occurring in test sediment samples caused toxicity initially attributed to 2,3,7,8-TCDD and HCB in the field studies. Another key application of spiked sediment tests has been the investigation of TOC as the primary factor affecting bioavailability of hydrophobic organic chemicals. A review of LC50s for nine chemicals reported in 12 studies shows that comparable LC50s derived in different sediments generally agree within a factor of five when concentrations are normalized to a constant TOC. Additionally, use of spiked sediment toxicity testing to investigate toxicological interactions among chemicals provides a promising approach to improving the ability to predict sediment toxicity in the field.  相似文献   

13.
Hemicelluloses are heteropolysaccharides existing in plant cell wall and seed, and they can be extracted or separated from plants as byproducts during the biomass pretreatment in biorefineries and the pulping in paper industry. The hemicelluloses have many applications such as in biofuels, platform chemicals, and materials. Producing packaging materials (films) is a potential high-value application of the hemicelluloses. However, native hemicelluloses are usually unable to form strong and durable films due to their short chain (low molecular weight), high hydrophilicity, and heterogeneous nature. Chemical and biological modifications could change the physicochemical properties of the hemicelluloses and thereby improve the strength and performance of the hemicellulose-based films. The present review extensively summarized and discussed the recent development and progress in hemicellulose modification strategies and methods for improving the formability and properties of the hemicellulose-based packaging films such as mechanical strength, processability, thermal stability, hydrophobicity, and oxygen and water vapor permeability, which include enzymatic treatment, esterification, etherification, oxidation, coupling, and crosslinking. The challenges and opportunities of hemicellulose as packaging materials were addresses.  相似文献   

14.
The effects of the ripeness stage of banana (Musa AAA) and plantain (Musa AAB) peels on neutral detergent fibre, acid detergent fibre, cellulose, hemicelluloses, lignin, pectin contents, and pectin chemical features were studied. Plantain peels contained a higher amount of lignin but had a lower hemicellulose content than banana peels. A sequential extraction of pectins showed that acid extraction was the most efficient to isolate banana peel pectins, whereas an ammonium oxalate extraction was more appropriate for plantain peels. In all the stages of maturation, the pectin content in banana peels was higher compared to plantain peels. Moreover, the galacturonic acid and methoxy group contents in banana peels were higher than in plantain peels. The average molecular weights of the extracted pectins were in the range of 132.6-573.8 kDa and were not dependant on peel variety, while the stage of maturation did not affect the dietary fibre yields and the composition in pectic polysaccharides in a consistent manner. This study has showed that banana peels are a potential source of dietary fibres and pectins.  相似文献   

15.
Introduction – Extraction and characterisation of hemicelluloses are very important for converting them into functional materials and chemicals. Objective – To develop a method for isolation of hemicelluloses from all cell walls. Methodology – Sequential steps using 90% dioxane, 80% acidic dioxane, 100% dimethyl sulphoxide and 8% NaOH were used for extraction of the hemicellulosic preparations (H1, H2, H3 and H4) from maize stem. Advanced NMR techniques were used for the analysis of native hemicelluloses. Results – Hemicelluloses with high yieldd were isolated from all cell walls, and contained arabinoxylan as the major polysaccharide. H3 was substituted by α‐l ‐arabinofuranose, α‐d ‐xylopyranose, and acetyl groups (degree of saturation = 0.12/0.09) at O‐3/O‐2 of xylan. H4 had a long continuous side chain of arabinose residues, and associated closely with non‐cellulosic glucose. The hemicelluloses formed more linkages with guaiacyl lignins, and some p‐coumaric acids built a bridge between hemicelluloses and lignin in maize stem. Conclusion – This modified method is successful for the isolation of hemicelluloses with high yields from all cell walls of maize stem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Sun JX  Sun R  Sun XF  Su Y 《Carbohydrate research》2004,339(2):291-300
The present study was undertaken to investigate the extractability of the hemicelluloses from bagasse obtained by ultrasound-assisted extraction methods. The results showed that the ultrasonic treatment and sequential extractions with alkali and alkaline peroxide under the conditions given led to a release of over 90% of the original hemicelluloses and lignin. This fact as well as the sugar composition and structural features of the isolated seven hemicellulosic fractions indicated that ultrasonication attacked the integrity of cell walls, cleaved the ether linkages between lignin and hemicelluloses, and increased accessibility and extractability of the hemicelluloses. Increasing alkali concentration from 0.5 to 2M and alkaline peroxide percentage from 0.5% to 3.0% resulted in degradation of hemicellulosic backbone as shown by a decrease in their molecular weights from 43,580 to 14,470 and 30,180 to 18,130gmol(-1), respectively. However, there were no significant differences in the structural features of the seven sequential alkali- or alkaline peroxide-soluble hemicellulosic fractions, which are composed mainly of L-arabino-(4-O-methyl-D-glucurono)-D-xylans. Ferulic and p-coumaric acids were found to be chemically linked with hemicelluloses.  相似文献   

17.
In the future, biomass will continue to emerge as a viable source of chemicals. The development of new industries that utilize bio-renewables provides opportunities for innovation. For example, bio- and chemo-catalysts can be combined in 'one pot' to prepare chemicals of commercial value. This has been demonstrated using isolated enzymes and whole cells for a variety of chemical transformations. The one-pot approach has been successfully adopted to convert chemicals derived from biomass, and, in our opinion, it has an important role to play in the design of a more sustainable chemical industry. To implement new one-pot bio- and chemo-catalytic processes, issues of incompatibility must be overcome; the strategies for which are discussed in this opinion article.  相似文献   

18.
A study of the potential of autohydrolysis and alkaline extraction processes from corn stalks was performed for high purity hemicellulose extraction. The influence of process parameters on the purity of obtained hemicelluloses was analyzed. An experimental design was developed for the autohydrolysis treatments to determine the optimal conditions to solubilize the hemicelluloses with lowest content in contaminants. On the other hand, alkaline extraction, including raw material pretreatment (dewaxing and delignification step) was carried out analyzing the effectiveness of this processes for maximum pure hemicellulose recovery. The maximum yield (54% of the raw material hemicelluloses) and the best physicochemical properties (highest hemicellulose content free of lignin) were obtained with these pretreatments in alkaline extraction. Moreover, the effect of lignin removal by sulfuric acid from the autohydrolysis liquors before hemicellulose precipitation was studied. This purification step has allowed to obtain lignin-free autohydrolysis hemicellulose but with the presence of sulfur as predominant contaminant.  相似文献   

19.
One major component of plant cell walls is a diverse group of polysaccharides, the hemicelluloses. Hemicelluloses constitute roughly one-third of the wall biomass and encompass the heteromannans, xyloglucan, heteroxylans, and mixed-linkage glucan. The fine structure of these polysaccharides, particularly their substitution, varies depending on the plant species and tissue type. The hemicelluloses are used in numerous industrial applications such as food additives as well as in medicinal applications. Their abundance in lignocellulosic feedstocks should not be overlooked, if the utilization of this renewable resource for fuels and other commodity chemicals becomes a reality. Fortunately, our understanding of the biosynthesis of the various hemicelluloses in the plant has increased enormously in recent years mainly through genetic approaches. Taking advantage of this knowledge has led to plant mutants with altered hemicellulosic structures demonstrating the importance of the hemicelluloses in plant growth and development. However, while we are on a solid trajectory in identifying all necessary genes/proteins involved in hemicellulose biosynthesis, future research is required to combine these single components and assemble them to gain a holistic mechanistic understanding of the biosynthesis of this important class of plant cell wall polysaccharides.  相似文献   

20.
This review article presents the traditional and medicinal uses, and examines recent investigations on the biological activities of extracts, and chemicals identified from mangroves and mangal associates. Metabolites identified from mangrove plants are classified according to ‘chemical classes’, and some of their structures are illustrated. The article also presents some of the functions of the chemicals present and attempt to emphasize and create an awareness of the great of potential mangroves and mangal associates possess as a source of novel agrochemicals, compounds of medicinal value, and a new source of many already known biologically active compounds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号