首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase C-β (PLC-β) isozymes are key effectors in G protein-coupled signaling pathways. Previously, we showed that PLC-β1 and PLC-β3 bound immobilized PIP3. In this study, PIP3 was found to potentiate Ca2+-stimulated PLC-β activities using an in vitro reconstitution assay. LY294002, a specific PI 3-kinase inhibitor, significantly inhibited 10 min of agonist-stimulated total IP accumulation. Both LY294002 and wortmannin inhibited 90 sec of agonist-stimulated IP3 accumulation in intact cells. Moreover, transfected p110CAAX, a constitutively activated PI 3-kinase catalytic subunit, increased 90 sec of oxytocin-stimulated IP3 accumulation. Receptor-ligand binding assays indicated that LY294002 did not affect G protein-coupled receptors directly, suggesting a physiological role for PIP3 in directly potentiating PLC-β activity. When coexpressed with p110CAAX, fluorescence-tagged PLC-β3 was increasingly localized to the plasma membrane. Additional observations suggest that the PH domain of PLC-β is not important for p110CAAX-induced membrane association.  相似文献   

2.
Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) at the plasma membrane (PM) constitutively controls many cellular functions, and its hydrolysis via receptor stimulation governs cell signaling. The PI transfer protein Nir2 is essential for replenishing PM PIP2 following receptor-induced hydrolysis, but key mechanistic aspects of this process remain elusive. Here, we demonstrate that PI at the membrane of the endoplasmic reticulum (ER) is required for the rapid replenishment of PM PIP2 mediated by Nir2. Nir2 detects PIP2 hydrolysis and translocates to ER-PM junctions via binding to phosphatidic acid. With distinct phosphatidic acid binding abilities and PI transfer protein activities, Nir2 and its homolog Nir3 differentially regulate PIP2 homeostasis in cells during intense receptor stimulation and in the resting state, respectively. Our study reveals that Nir2 and Nir3 work in tandem to achieve different levels of feedback based on the consumption of PM PIP2 and function at ER-PM junctions to mediate nonvesicular lipid transport between the ER and the PM.  相似文献   

3.
Translocation to the nucleus of diacylglycerol kinase (DGK)– ζ is dependent on a sequence homologous to the effector domain of Myristoylated Alanine Rich C-Kinase Substrate (MARCKS). These data would suggest that MARCKS could also localize to the nucleus. A single report demonstrated immunofluorescence staining of MARCKS in the nucleus; however, further experimental evidence confirming the specific domain responsible for this localization has not been reported. Here, we report that MARCKS is present in the nucleus in GBM cell lines. We then over-expressed wild-type MARCKS (WT) and MARCKS with the effector domain deleted (ΔED), both tagged with V5-epitope in a GBM cell line with low endogenous MARCKS expression (U87). We found that MARCKS-WT localized to the nucleus, while the MARCKS construct without the effector domain remained in the cytoplasm. We also found that over-expression of MARCKS-WT resulted in a significant increase in total cellular phosphatidyl-inositol (4,5) bisphosphate (PIP2) levels, consistent with prior evidence that MARCKS can regulate PIP2 levels. We also found increased staining for PIP2 in the nucleus with MARCKS-WT over-expression compared to MARCKS ΔED by immunofluorescence. Interestingly, we observed MARCKS and PIP2 co-localization in the nucleus. Lastly, we found changes in gene expression when MARCKS was not present in the nucleus (MARCKS ΔED). These data indicate that the MARCKS effector domain can function as a nuclear localization signal and that this sequence is critical for the ability of MARCKS to regulate PIP2 levels, nuclear localization, and gene expression. These data suggests a novel role for MARCKS in regulating nuclear functions such as gene expression.  相似文献   

4.
The binding of 25-hydroxy-[26,27-3H]vitamin D3 and 1,25-dihydroxy-[26,27-3H]vitamin D3 to the cytosol of intestinal mucosa of chicks and rats has been studied by sucrose gradient analysis. The cytosol from chick mucosa showed variable binding of 1,25-dihydroxyvitamin D3 to a 3.0S macromolecule which has high affinity and low capacity for this metabolite. However, when the mucosa was washed extensively before homogenization, a 3.7S macromolecule was consistently observed which showed considerable specificity and affinity for 1,25-dihydroxyvitamin D3. Although 3.7S binders for 1,25-dihydroxyvitamin D3 could also be located in other organs, competition experiments with excess nonradioactive 1,25-dihydroxyvitamin D3 suggested that they were not identical to the 3.7S macromolecule from intestinal mucosal cytosol. As the 3.7S macromolecule was allowed to stand at 4 °C with bound 1,25-dihydroxy-[3H]vitamin D3, the 1,25-dihydroxy-[3H]vitamin D3 became increasingly resistant to displacement by non-radioactive 1,25-dihydroxyvitamin D3. The 1,25-dihydroxy-[3H]vitamin D3 remained unchanged and easily extractable with lipid solvents through this change, making unlikely the establishment of a covalent bond. Unlike the chick, mucosa from rats yielded cytosol in which no specific binding of 1,25-dihydroxy-[3H]vitamin D3 was detected. Instead, a 5-6S macromolecule which binds both 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 was found. This protein which was also found in chick mucosa shows preferential binding for 25-hydroxyvitamin D3. It could be removed by washing the mucosa with buffer prior to homogenization which suggests that it may not be a cytosolic protein. Although the 3.7S protein from chick mucosa has properties consistent with its possible role as a receptor, the 5-6S macromolecule does not appear to have “receptor”-like properties.  相似文献   

5.
The 6 S, cytosolic 25-hydroxyvitamin D3 binding protein found in several rat tissues reacts with an antibody directed to the serum 25-hydroxyvitamin D3 transport protein. The 6 S “cytosolic” protein is not found in carefully washed intestinal mucosal cells isolated from chicks and rats, but can be made to appear by adding serum to the cytosol itself or to the cells prior to homogenization. On the other hand, the rat intestinal 3.2 S cytosol binding protein for 1,25-dihydroxyvitamin D3 does not react with the antibody to the serum transport protein. Thus the 6 S, 25-hydroxyvitamin D3 binding protein does not appear to be a physiologically significant substance, but rather the result of the serum 25-hydroxyvitamin D3 transport protein interacting with a cytosolic protein in vitro.  相似文献   

6.
In eukaryotic chemotaxis, the mechanisms connecting external signals to the motile apparatus remain unclear. The role of the lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3) has been particularly controversial. PIP3 has many cellular roles, notably in growth control and macropinocytosis as well as cell motility. Here we show that PIP3 is not only unnecessary for Dictyostelium discoideum to migrate toward folate, but actively inhibits chemotaxis. We find that macropinosomes, but not pseudopods, in growing cells are dependent on PIP3. PIP3 patches in these cells show no directional bias, and overall only PIP3-free pseudopods orient up-gradient. The pseudopod driver suppressor of cAR mutations (SCAR)/WASP and verprolin homologue (WAVE) is not recruited to the center of PIP3 patches, just the edges, where it causes macropinosome formation. Wild-type cells, unlike the widely used axenic mutants, show little macropinocytosis and few large PIP3 patches, but migrate more efficiently toward folate. Tellingly, folate chemotaxis in axenic cells is rescued by knocking out phosphatidylinositide 3-kinases (PI 3-kinases). Thus PIP3 promotes macropinocytosis and interferes with pseudopod orientation during chemotaxis of growing cells.  相似文献   

7.
The subcellular distribution of phospholipase C (PLC) activity in rabbit thymocytes was examined by measuring the enzyme's activity in different subcellular fractions. PLC activity was determined using exogenously added [3H]PIP2 as substrate. Approx. 80% of the activity of the cell homogenate was found in the cytosolic fraction. A minor portion of PLC activity was attached to the particulate fraction. This membrane-associated PLC activity was found to be predominantly bound to the plasma membrane. Both PIP2-cleaving PLCs (the PLC associated with the plasma membrane and the PLC in the cytosol) exhibited maximum activity at pH 5. GTPγS stimulated the cytosolic and the membrane-bound PLC. As revealed by computer analysis of the substrate dependence of both basal and GTPγS-stimulated PLC activity, GTPγS enhanced the Vmax of the enzymes. Calcium, at a concentration of 1 mM, decreased PLC activity, as compared to a calcium concentration of 100 nM. The characteristics increase in Vmax induced by GTPγS was observed at a concentration of 1 mM calcium and was similar to that at 100 nM. These data suggest that the stimulatory effect of GTPγS is not due to an increased affinity of PLCs to calcium.  相似文献   

8.
Investigation of the mechanism underlying cell membrane-targeted WAVE2 capture by phosphatidylinositol 3,4,5-triphosphate (PIP3) through IRSp53 revealed an unidentified 250-kDa protein (p250) bound to PIP3. We identified p250 as nonmuscle myosin IIA heavy chain (MYH9) by mass spectrometry and immunoblot analysis using anti-MYH9 antibody. After stimulation with insulin-like growth factor I (IGF-I), MYH9 colocalized with PIP3 in lamellipodia at the leading edge of cells. Depletion of MYH9 expression by small interfering RNA (siRNA) and inhibition of myosin II activity by blebbistatin abrogated the formation of actin filament (F-actin) arcs and lamellipodia induced by IGF-I. MYH9 was constitutively associated with WAVE2, which was dependent on myosin II activity, and the MYH9-WAVE2 complex colocalized to PIP3 at the leading edge after IGF-I stimulation. These results indicate that MYH9 is required for lamellipodia formation since it provides contractile forces and tension for the F-actin network to form convex arcs at the leading edge through constitutive binding to WAVE2 and colocalization with PIP3 in response to IGF-I.  相似文献   

9.
Since phosphorylation of chromosomal proteins by cyclic AMP-dependent protein kinases (EC 2.7.1.37) enhances template activity of adrenal medulla chromatin (9), we have studied the properties and regulation of protein kinases isolated from chromaffin cell cytosol and nuclei. DEAE-cellulose chromatography revealed three peaks of kinase activity in the nucleus (nPKI, nPKII, nPKIII) and two in the cytosol (cPKI, cPKII). The three nuclear enzymes, as well as cPKII, did not require cyclic AMP to express their catalytic activity, nPKI and nPKIII preferred acidic substrates as PO 4 3– acceptors, while nPKII and the cytosol enzymes preferred basic PO 4 3– acceptors. Enzyme recombination experiments using protein kinase regulatory subunits from cytosol suggested that cPKII was the catalytic subunit of cPKI. In contrast, the nuclear enzymes were not catalytic subunits of the cyclic AMP-dependent protein kinase in the cytosol (cPKI). Only the cytosol protein kinases could be inhibited by endogenous heat-stable protein kinase inhibitors. The nuclear and cytosol cyclic AMP-independent protein kinases were distinguishable on the basis of their sedimentation constants as well as Mg2+ and Mn2+ requirements.  相似文献   

10.
Ezrin is a member of the ezrin-radixin-moesin family (ERM) of adapter proteins that are localized at the interface between the cell membrane and the cortical actin cytoskeleton, and they regulate a variety of cellular functions. The structure representing a dormant and closed conformation of an ERM protein has previously been determined by x-ray crystallography. Here, using contrast variation small angle neutron scattering, we reveal the structural changes of the full-length ezrin upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and to F-actin. Ezrin binding to F-actin requires the simultaneous binding of ezrin to PIP2. Once bound to F-actin, the opened ezrin forms more extensive contacts with F-actin than generally depicted, suggesting a possible role of ezrin in regulating the interfacial structure and dynamics between the cell membrane and the underlying actin cytoskeleton. In addition, using gel filtration, we find that the conformational opening of ezrin in response to PIP2 binding is cooperative, but the cooperativity is disrupted by a phospho-mimic mutation S249D in the 4.1-ezrin/radixin/moesin (FERM) domain of ezrin. Using surface plasmon resonance, we show that the S249D mutation weakens the binding affinity and changes the kinetics of 4.1-ERM to PIP2 binding. The study provides the first structural view of the activated ezrin bound to PIP2 and to F-actin.  相似文献   

11.
We investigated the association of DNA polymerase and DNA primase activity with the nuclear matrix in HeLa S3 cells diluted with fresh medium after having been cultured without any medium change for 7 days. Flow cytometric analysis demonstrated that just before dilution about 85% of the cells were in the G1 phase of the cycle, whereas 8% were in the S phase. After dilution with fresh medium, 18–22 h were required for the cell population to attain a stable distribution with respect to the cell cycle. At that time, about 38% of the cells were in the S phase. DNA polymerase and DNA primase activity associated with the nuclear matrix prepared from cells just before dilution represented about 10% of nuclear activity. As judged by [3H]-thymidine incorporation and flow cytometric analysis, an increase in the number of S-phase cells was evident at least 6 h after dilution. However, as early as 2 h after dilution into fresh medium, a striking prereplicative increase of the two activitites was seen in the nuclear matrix fraction but not in cytosol or isolated nuclei. Both DNA polymerase and primase activities bound to the matrix were about 60% of nuclear activity. Overall, the nuclear matrix was the cell fraction where the highest induction (about 10-fold) of both enzymatic activities was seen at 30 h after dilution, whereas in cytosol and isolated nuclei the increase was about two- and fourfold, respectively. Typical immunofluorescent patterns given by an antibody to 5-bromodeoxyuridine were seen after dilution. These findings, which are at variance with our own previous results obtained with cell cultures synchronized by either a double thymidine block or aphidicolin exposure, strengthen the contention that DNA replication is associated with an underlying nuclear structure and demonstrate the artifacts that may be generated by procedures commonly used to synchronize cell cultures. J. Cell. Biochem. 71:11–20, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
The intracellular localizations of phosphatidylinositol 4,5-bisphosphate (PIP2) and of its hydrolyzing enzyme phospholipase C (PLC; in this case the β1 isoform) have been evaluated by electron microscope immunocytochemistry in cells exposed to mitogenic or differentiating agents. These cells have been previously demonstrated to present a signal transduction system based on the polyphosphoinositide hydrolysis localized at the nuclear level, which can be specifically modulated by agonists. The results demonstrate that in Swiss 3T3 mouse fibroblasts mitogenically stimulated by insulin-like growth factor I (IGF-I), a rapid and transient decrease of the PIP2 detectable by immunogold labeling occurs at the nuclear interior. This effect appears due to the activation of the PLC β1 isozyme already present in the nucleus, since no significant variations of the enzyme amount and distribution can be detected by immunolabeling. However, after 30 min of exposure to IGF-I, when the PLC β1 activity is returned to basal level, a slight but significant increase of the enzyme amount is detected both in the nucleus and in the cytoplasm. On the other hand, an increased accumulation of PIP2 in the nucleus, accompanied by a decrease of the intranuclear amount of PLC β1 isozyme, have been observed in mouse erythroleukemia Friend cells, induced to erythroid differentiation by dimethylsulfoxide (DMSO). These results indicate that quantitative immunocytochemistry represents an increment in the available methodologies to investigate the complex regulation of nuclear PI-signalling.  相似文献   

13.
Objective: Subcellular localization has been shown to play an important role in determining activity and accumulation of p27 protein during cell cycle progression. The purpose of this study was to examine p27 localization and ubiquitylation in relation to E3 ligase expression during adipocyte hyperplasia. Research Methods and Procedures: This study used the murine 3T3‐L1 preadipocyte model to examine p27 regulation during synchronous cell cycle progression. Cell lysates were isolated over time after hormonal stimulation, fractionated to cytosolic and nuclear compartments, and immunoblotted for relative protein determinations. Results: Data presented in this study show that p27 was present in the cytosol and nucleus in density‐arrested preadipocytes and that abundance in both compartments decreased in a phase‐specific manner as preadipocytes synchronously re‐entered the cell cycle during early phases of adipocyte differentiation. Blocking CRM1‐mediated nuclear export did not prevent degradation, nor did it cause nuclear accumulation of p27, suggesting that distinct mechanisms mediating cytosolic and nuclear p27 degradation were involved. Treating preadipocytes with a potent and specific proteasome inhibitor during hormonal stimulation prevented Skp2 accumulation and p27187 phosphorylation, which are essential events for SCFSkp2 E3 ligase activity and nuclear p27 ubiquitylation during S/G2 phase progression. Proteasome blockade also resulted in the first evidence of cytosolic p27 ubiquitylation during late G1 phase as preadipocytes undergo the transition from quiescence to proliferation. Discussion: These data are consistent with the postulate that p27 is ubiquitylated and targeted for degradation by the 26S proteasome in a phase‐specific manner by distinct ubiquitin E3 ligases localized to the cytosol and nucleus during adipocyte hyperplasia.  相似文献   

14.
The kinetics of phosphatidylcholine-specific phospholipase D activated by phosphatidylinositol 4,5-bisphosphate (PIP2) and inhibition by neomycin were studied in an enzyme preparation partially purified from human hepatocarcinoma cell line. It was found that phospholipase D was marginally activated by phosphatidyl-4-phosphate (PIP) and phosphatidylethanolamine (PE). In contrast, it was considerably activated by PIP2 in different concentration of phosphatidylcholine (PC). Sphingomyelin (SM), lysophosphatidylcholine (LPC) and phosphatidylserine (PS) were neither substrates nor inhibitors of the phospholipase D. PIP2 induced an allosteric effect on phospholipase D and a negative cooperative effect with respect to phosphatidylcholine as indicated in the Lineweaver-Burk plot. In the absence of PIP2, a straight line was obtained, whereas a downward concave curve was observed in the presence of 25 M of PIP2. The Hill coefficient and the apparent Km of phosphatidylcholine in the presence of 25 M PIP2 were calculated to be 0.631 and 10.79 mM, respectively. PIP2 also increased the maximal velocity (Vmax) of the phospholipase D reaction, suggesting that the affinity of substrate to enzyme was decreased, and the turnover number of the enzyme (kcat) was increased by PIP2. The activation of phospholipase D by PIP2 was dose dependent up to 50 M of PIP2. The Ka of PIP2 was 15.8 mM. Neomycin, a polycationic glycoside, was shown to be an uncompetitive inhibitor of phospholipase D, and revealed the formation of a neomycin-PIP2 complex. The Ki of neomycin was estimated to be 8.7 mM.  相似文献   

15.
16.
Isolated, intact rat liver nuclei have high-affiity (Kd=10−9 M) binding sites that are highly specific for nonsteroidal antiestrogens, especially for compounds of the triphenylethylene series. Nuclear [3H]tamoxifen binding capacity is thermolabile, being most stable at 4°C and rapidly lost at 37°C. More [3H]tamoxifen, however, is specifically bound at incubation temperatures of 25°C and 37°C than at 4°C although prewarming nuclei has no effect, suggesting exchange of [3H]tamoxifen for an unidentified endogenous ligand. Nuclear antiestrogen binding sites are destroyed by trypsin but not by deoxyribonuclease I or ribonuclease A. The nuclear antiestrogen binding protein is not solubilized by 0.6 M potassium chloride, 2 M sodium chloride, 0.6 M sodium thiocyanate, 3 M urea, 20 mM pyridoxal phosphate, 1% (w/v) digitonin or 2% (w/v) sodium cholate but is extractable by sonication, indicating that it is tightly bound within the nucleus. Rat liver nuclear matrix contains high-affinity (Kd=10−9 M) [3H]tamoxifen binding sites present in 5-fold higher concentrations (4.18 pmol/mg DNA) than in intact nuclei (0.78±0.10 (S.D.) pmol/mg DNA). Low-speed rat liver cytosol (20 000×g, 30 min) contains high-capacity (955±405 (S.D.) fmol/mg protein), low-affinity (Kd=10.9±4.5 (S.D.) nM) antiestrogen binding sites. In contrast, high-speed cytosol (100 000×g, 60 min) contains low-capacity (46±15 (S.D.) fmol/mg protein), high-affinity (Kd=0.61± 0.20 (S.D.) nM) binding sites. Low-affinity cytosolic sites constitute more than 90% of total liver binding sites, high-affinity cytosolic sites 0.3%–3.2%, and nuclear sites less than 0.5% of total sites.  相似文献   

17.
The modulation of GnT-V activity by signaling molecules in PI-3-K/PKB pathway in human hepatocarcinoma cell line 7721 was studied. GnT-V activity was determined after the transfection of sense or antisense cDNA of PKB into the cells, as well as the addition of activators, specific inhibitors, and the antibodies to the enzyme assay system or culture medium. It was found that the basal activity of GnT-V was up regulated by the sense and down regulated by the antisense cDNA of PKB transfected into 7721 cells. GnT-V was activated by PIP2, PIP3 or GTP[S] added to the assay system, and the activation of PIP2 or GTP[S] was abolished by LY2940002, a specific inhibitor of PI-3-K, but the activation of PIP3 was not attenuated by LY2940002. In addition, GnT-V activity in cultured parental or H-ras transfected cells was inhibited by the antibody against PKB or PI-3-K. These findings demonstrated the involvement of PI-3-K/PKB signaling pathway in the regulation of GnT-V. Moreover, ET18-OCH3, an inhibitor of Raf translocation and PI-PLC enzyme, which produces the activator of PKC, as well as the antibodies against Raf-1 or MEK also inhibited GnT-V activity in the parental and H-ras transfected cells. The inhibitory rates, however, were less in the transfected cells than those in the parental cells. These results reveal that in parental and H-ras transfected 7721 cells, the basal activity of GnT-V is also regulated by the Ras/Raf-1/MEK/MAPK cascade in addition to PI-3-K/PKB signaling pathway. The significance of these two pathways in the regulation of GnT-V and their relations to the activation of PKC previously reported by our laboratory (Ju TZ et al., 1995 Glyconjugate J 12, 767–772) was discussed.  相似文献   

18.
The Slo3 gene encodes a high conductance potassium channel, which is activated by both voltage and intracellular alkalinization. Slo3 is specifically expressed in mammalian sperm cells, where it gives rise to pH-dependent outwardly rectifying K+ currents. Sperm Slo3 is the main current responsible for the capacitation-induced hyperpolarization, which is required for the ensuing acrosome reaction, an exocytotic process essential for fertilization. Here we show that in intact spermatozoa and in a heterologous expression system, the activation of Slo3 currents is regulated by phosphatidylinositol 4,5-bisphosphate (PIP2). Depletion of endogenous PIP2 in inside-out macropatches from Xenopus oocytes inhibited heterologously expressed Slo3 currents. Whole-cell recordings of sperm Slo3 currents or of Slo3 channels co-expressed in Xenopus oocytes with epidermal growth factor receptor, demonstrated that stimulation by epidermal growth factor (EGF) could inhibit channel activity in a PIP2-dependent manner. High concentrations of PIP2 in the patch pipette not only resulted in a strong increase in sperm Slo3 current density but also prevented the EGF-induced inhibition of this current. Mutation of positively charged residues involved in channel-PIP2 interactions enhanced the EGF-induced inhibition of Slo3 currents. Overall, our results suggest that PIP2 is an important regulator for Slo3 activation and that receptor-mediated hydrolysis of PIP2 leads to inhibition of Slo3 currents both in native and heterologous expression systems.  相似文献   

19.
The effect of GTP on the hydrolysis of [3H]phosphatidyinositol (PI), [3H]phosphatidylinositol-4-phosphate (PIP) and [3H]phosphatidylinositol-4,5-bisphosphate (PIP2) by phospholipase C of rat brain plasma membrane, microsomes and cytosol was determined. Moreover the regulation of PI and PIP phosphorylation by GTP in brain plasma membrane was investigated.In the presence of EGTA PIP2 was actively degradted, opposite to PI and PIP which require Ca2+ for their hydrolysis. Addition of calcium ions in each case caused stimulation of inositide phosphodiesterase(s). GTP independently of calcium ions activates by about 3 times phospholipase C acting on PIP and PIP2 exclusively in the plasma membrane. PI degradation was unaffected by GTP. In the presence of Ca2+ guanine nucleotides have synergistic stimulatory effect on plasma membrane bound phospholipase C acting on PIP2. PIP kinase of brain plasma membrane was stimulated by GTP by about 20–100% in the presence of exogenous and endogenous substrate respectively. PI kinase was negligible activated by about 20% exclusively in the presence of endogenous substrate. These results indicated that guanine nucleotide modulates the level of second messengers as diacylglycerol and IP3 through the activation of phospholipase C acting on PIP2 exclusively in brain plasma membrane. The stimulation of phospholipase C by GTP may occur directly or through the enhancement of substrate level PIP2 due to stimulation of PIP kinase.  相似文献   

20.
The binding of 3H-corticosterone and 3H-11-dehydrocorticosterone to receptors in cytosol and nucleus was examined in fetal mouse brain and placenta using Sephadex gel filtration or charcoal to separate bound and unbound steroid. In the cytosol, competitive displacement of each steroid by the other was observed. The binding was unaffected by RNase, DNase, dithiothreitol or N-ethyl maleimide but was diminished by Pronase. Nuclei were isolated by hypotonic shock using dilute MgCl2 and the steroid receptor-complexes of both steroids were obtained from the nuclear sap. Receptor-complexes of both steroids were observed in brain and placental tissues. Competitive displacement of each steroid by the other was also observed in nuclear binding. Both 11-dehydrocorticosterone and 11-deoxycorticosterone bound to a chromatin fraction as did the hormone corticosterone. Identity of the steroids was established by using chromatography and co-crystallization techniques. This work raises the possibility that in the fetal mouse, 11-dehydrocorticosterone, previously considered biologically inactive and an abundant metabolite in fetal mouse tissues, may in fact play a more positive role in regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号