首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The various functions attributed to the S-layer of Aeromonas salmonicida have been previously identified by their conspicuous absence in S-layer-defective mutants. As a different approach to establish the multifunctional nature of this S-layer, we established methods for reconstitution of the S-layer of A. salmonicida. Then we investigated the functional competence of the reconstituted S-layer. S-layers were reconstituted in different systems: on inert membranes or immobilized lipopolysaccharide (LPS) from purified S-layer protein (A-protein) or on viable cells from either A-protein or preassembled S-layer sheets. In the absence of divalent cations and LPS, purified A-protein in solution spontaneously assembled into tetrameric oligomers and, upon concentration by ultrafiltration, into macroscopic, semicrystalline sheets formed by oligomers loosely organized in a tetragonal arrangement. In the presence of Ca2+, purified A-protein assembled into normal tetragonal arrays of interlocked subunits. A-protein bound with high affinity (Kd, 1.55 x 10(-7) M) and specificity to high-molecular-weight LPS from A. salmonicida but not to the LPSs of several other bacterial species. In vivo, A-protein could be reconstituted only on A. salmonicida cells which contained LPS, and Ca2+ affected both a regular tetragonal organization of the reattached A-protein and an enhanced reattachment of the A-protein to the cell surface. The reconstitution of preformed S-layer sheets (produced by an S-layer-secreting mutant) to an S-layer-negative mutant occurred consistently and efficiently when the two mutant strains were cocultured on calcium-replete solid media. Reattached A-protein (exposed on the surface of S-layer-negative mutants) was able to bind porphyrins and an S-layer-specific phage but largely lacked regular organization, as judged by its inability to bind immunoglobulins. Reattached S-layer sheets were regularly organized and imparted the properties of porphyrin binding, hydrophobicity, autoaggregation, adherence to and invasion of fish macrophages and epithelial cells, and resistance to macrophage cytotoxicity. However, cells with reconstituted S-layers were still sensitive to complement and insensitive to the antibiotics streptonigrin and chloramphenicol, indicating incomplete functional reconstitution.  相似文献   

2.
Adherence and invasion are thought to be key events in the pathogenesis of non-typeable Haemophilus influenzae (NTHi). The role of NTHi lipooligosaccharide (LOS) in adherence was examined using an LOS-coated polystyrene bead adherence assay. Beads coated with NTHi 2019 LOS adhered significantly more to 16HBE14 human bronchial epithelial cells than beads coated with truncated LOS isolated from an NTHi 2019 pgmB:ermr mutant (P = 0.037). Adherence was inhibited by preincubation of cell monolayers with NTHi 2019 LOS (P = 0.0009), but not by preincubation with NTHi 2019 pgmB:ermr LOS. Competitive inhibition studies with a panel of compounds containing structures found within NTHi LOS suggested that a phosphorylcholine (ChoP) moiety was involved in adherence. Further experiments revealed that mutations affecting the oligosaccharide region of LOS or the incorporation of ChoP therein caused significant decreases in the adherence to and invasion of bronchial cells by NTHi 2019 (P < 0.01). Analysis of infected monolayers by confocal microscopy showed that ChoP+ NTHi bacilli co-localized with the PAF receptor. Pretreatment of bronchial cells with a PAF receptor antagonist inhibited invasion by NTHi 2109 and two other NTHi strains expressing ChoP+ LOS glycoforms exhibiting high reactivity with an anti-ChoP antibody on colony immunoblots. These data suggest that a particular subset of ChoP+ LOS glycoforms could mediate NTHi invasion of bronchial cells by means of interaction with the PAF receptor.  相似文献   

3.
Campylobacter fetus strains may be of serotype A or B, a property associated with lipopolysaccharide (LPS) structure. Wild-type C. fetus strains contain surface array proteins (S-layer proteins) that may be extracted in water and that are critical for virulence. To explore the relationship of S-layer proteins to other surface components, we reattached S-layer proteins onto S- template cells generated by spontaneous mutation or by serial extractions of S+ cells with water. Reattachment occurred in the presence of divalent (Ba2+, Ca2+, Co2+, and Mg2+) but not monovalent (H+, NH4+, Na+, K+) or trivalent (Fe3+) cations. The 98-, 125-, 127-, and 149-kDa S-layer proteins isolated from strains containing type A LPS (type A S-layer protein) all reattached to S- template cells containing type A LPS (type A cells) but not to type B cells. The 98-kDa type B S-layer protein reattached to SAP- type B cells but not to type A cells. Recombinant 98-kDa type A S-layer protein and its truncated amino-terminal 65- and 50-kDa segments expressed in Escherichia coli retained the full and specific determinants for attachment. S-layer protein and purified homologous but not heterologous LPS in the presence of calcium produced insoluble complexes. By quantitative enzyme-linked immunosorbent assay, the S-layer protein copy number per C. fetus cell was determined to be approximately 10(5). In conclusion, C. fetus cells are encapsulated by a large number of S-layer protein molecules which may be specifically attached through the N-terminal half of the molecule to LPS in the presence of divalent cations.  相似文献   

4.
To gain entry into non-phagocytic cells, Trypanosoma cruzi trypomastigotes recruit lysosomes to the host cell surface. Lysosome fusion at the site of parasite entry leads to the formation of a parasitophorous vacuole with lysosomal properties. Here, we show that increased expression of the lysosomal membrane glycoprotein Lamp-1 at the cell surface renders CHO cells more susceptible to trypomastigote invasion in a microtubule-dependent fashion. Mutation of critical residues in the lysosome-targeting motif of Lamp-1 abolished the enhancement of T. cruzi invasion. This suggests that interactions dependent on Lamp-1 cytoplasmic tail motifs, and not the surface-exposed luminal domain, modulate T. cruzi entry. Measurements of Ca2+-triggered exocytosis of lysosomes in these cell lines revealed an enhancement of beta-hexosaminidase release in cells expressing wild-type Lamp-1 on the plasma membrane; this effect was not observed in cell lines transfected with Lamp-1 cytoplasmic tail mutants. These results also implicate Ca2+-regulated lysosome exocytosis in cell invasion by T. cruzi and indicate a role for the Lamp-1 cytosolic domain in promoting more efficient fusion of lysosomes with the plasma membrane.  相似文献   

5.
When S-layered strains of Bacillus stearothermophilus and Aneurinibacillus thermoaerophilus, possessing S-layers of different lattice type and lattice constant as well as S-(glyco)protein chemistry, and isogenic S-layerless variants were subjected to membrane vesicles (MVs) from P. aeruginosa during plaque assays on plates or CFU measurements on cell suspensions, all bacterial types lysed. Electron microscopy of negative stains, thin sections, and immunogold-labelled MV preparations revealed that the vesicles adhered to all bacterial surfaces, broke open, and digested the underlying peptidoglycan-containing cell wall of all cell types. Reassembled S-layer did not appear to be affected by MVs, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the S-(glyco)proteins remained intact. meso-Diaminopimelic acid, as a peptidoglycan breakdown product, was found in all culture supernatants after MV attack. These results suggest that even though MVs are much larger than the channels which penetrate these proteinaceous arrays, S-layers on gram-positive bacteria do not form a defensive barrier against the lytic action of MVs. The primary mode of attack is by the liberation from the MVs of a peptidoglycan hydrolase, which penetrates through the S-layer to digest the underlying peptidoglycan-containing cell wall. The S-layer is not affected by MV protease.  相似文献   

6.
Surface layers (S-layers) from Bacteria and Archaea are built from protein molecules arrayed in a two-dimensional lattice, forming the outermost cell wall layer in many prokaryotes. In almost half a century of S-layer research a wealth of structural, biochemical, and genetic data have accumulated, but it has not been possible to correlate sequence data with the tertiary structure of S-layer proteins to date. In this paper, some highlights of structural aspects of archaeal and bacterial S-layers that allow us to draw some conclusions on molecular properties are reviewed. We focus on the structural requirements for the extraordinary stability of many S-layer proteins, the structural and functional aspects of the S-layer homology domain found in S-layers, extracellular enzymes and related functional proteins, and outer membrane proteins, and the molecular interactions of S-layer proteins with other cell wall components. Finally, the perspectives and requirements for structural research on S-layers, which indicate that the investigation of isolated protein domains will be a prerequisite for solving S-layer structures at atomic resolution, are discussed.  相似文献   

7.
Mechanism of osmoprotection by archaeal S-layers: a theoretical study   总被引:1,自引:1,他引:0  
Many Archaea possess protein surface layers (S-layers) as the sole cell wall component. S-layers must therefore integrate the basic functions of mechanical and osmotic cell stabilisation. While the necessity is intuitively clear, the mechanism of structural osmoprotection by S-layers has not been elucidated yet. The theoretical analysis of a model S-layer-membrane assembly, derived from the typical cell envelope of Crenarchaeota, explains how S-layers impart lipid membranes with increased resistance to internal osmotic pressure and offers a quantitative assessment of S-layer stability. These considerations reveal the functional significance of S-layer symmetry and unit cell size and shed light on the rationale of S-layer architectures.  相似文献   

8.
9.
Lactobacillus surface layers and their applications   总被引:6,自引:0,他引:6  
Surface (S-) layers are crystalline arrays of proteinaceous subunits present as the outermost component of cell wall in several species of the genus Lactobacillus, as well as in many other bacteria and Archaea. Despite the high similarity of the amino acid composition of all known S-layer proteins, the overall sequence similarity is, however, surprisingly small even between the Lactobacillus S-layer proteins. In addition, the typical characteristics of Lactobacillus S-layer proteins, distinguishing them from other S-layer proteins, are small size and high-predicted pI value. Several lactobacilli possess multiple S-layer protein genes, which can be differentially or simultaneously expressed. To date, the characterized functions of Lactobacillus S-layers are involved in mediating adhesion to different host tissues. A few applications for the S-layer proteins of lactobacilli already exist, including their use as antigen delivery vehicles.  相似文献   

10.
Cultured epidermal malpighian cells and experimental wounds of Atlantic salmon Salmo salar were challenged with a variety of particulate materials. Latex beads and the bacteria Carnobacterium piscicola, Pseudomonas fluorescens and Aeromonas salmonicida salmonicida were engulfed by cultured cells, whereas Staphylococcus intermedius were not. The cells engulfed bacteria that proliferated in culture medium devoid of antibiotics and melanin granules and other cellular debris. Cells at wound margins engulfed latex beads and C. piscicola, P. fluorescens and A. s. salmonicida , but not S. intermedius. Malpighian cells thus appear to be both phagocytic and discriminatory. The results support the hypothesis that malpighian cells remove foreign material from fish skin by sloughing after becoming laden with engulfed material.  相似文献   

11.
Debabov  V. G. 《Molecular Biology》2004,38(4):482-493
Many bacteria and archaea have a crystalline surface layer (S-layer), which overlies the cell envelope. S-layers each consist of one protein or glycoprotein species. Protein subunits of the S-layer noncovalently interact with each other and with the underlying cell-envelope component. On average, the S-layer lattice has pores of 2–6 nm and is 5–10 nm high. Isolated S-layer proteins recrystallize to form two-dimensional crystalline structures in solution, on a solid support, and on planar lipid membranes. Owing to this unique property, S-layers have a broad range of applications. This review focuses on the structural features and applications of S-layers and their proteins, with special emphasis on their use in nanobiotechnology.  相似文献   

12.
In this article, we describe a novel type of affinity matrix which was prepared by covalently binding Protein A to crystalline cell surface layers (S-layers) from the gram-positive Clostridium thermohydrosulfuricum L111-69. S-layers were used in the form of cell wall fragments, which were obtained by breaking whole cells by ultrasonification and removing the cell content and the plasma membrane. In these thimble shaped structures, revealing a size of 1 to 2 mum, the peptidoglycan-containing layer was covered on both faces with a hexagonally ordered S-layer lattice composed of identical glycoprotein subunits. After crosslinking the S-layer protein with glutaraldehyde, carboxyl groups from acidic amino acids were activated with carbodiimide and used for immobilization of Protein A. Quantitative determination confirmed that up to two Protein A molecules were bound per S-layer subunit leading to a dense monomolecular coverage of the immobilization matrix with the ligand.Affinity microparticles were capable of adsorbing lgG from solutions of purified preparations, from artificial lgG-albumin mixtures, and from serum. The amount of lgG bound to affinity microparticles corresponded to the theoretical saturation capacity. Under appropriate conditions, up to 95% of the adsorbed lgG could be eluted again. Affinity microparticles were found to have an extremely low Protein A leakage and a high stability toward mechanical forces. Because pores in the S-layer lattice revealed a size of 4 to 5 nm, immobilization of Protein A and adsorption of lgG was restricted to the outermost surface area. This excludes mass transfer problems usually encountered with affinity matrices prepared from amorphous polymers where more than 90% of the ligands are immobilized in the interior. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
Mutants of SV40-transformed mouse fibroblasts have been isolated that have greatly increased cell-substratum adherence. The adherent phenotype (COL-) is recessive, and all mutants analyzed belong to one complementation group. No consistent qualitative differences between wild-type and mutant cells were found with respect to the protein content of the substrate-attached material (SAM), a cell surface fraction left after removal of cells from the substrate with a gentle Ca2+-chelating agent. However, the mutants yielded 2.5-10-fold more SAM than the parental cell line, and the SAM deposited by mutants was able to mediate attachment of transformed cells to a much greater degree than was the SAM from the parental cell line. The mutation, which appears to control the generation of footpads, was shown to cosegregate with resistance to the drug 6-thioguanine, which suggests X-linkage.  相似文献   

14.
The Gram-positive pathogen Bacillus anthracis causes anthrax, a fulminant and lethal infection of mammals. Two large virulence plasmids, pXO1 and pXO2, harbour genes required for anthrax pathogenesis and encode secreted toxins or provide for the poly γ- d -glutamic acid capsule. In addition to capsule, B. anthracis harbours additional cell wall envelope structures, including the surface layer (S-layer), which is composed of crystalline protein arrays. We sought to identify the B. anthracis envelope factor that mediates adherence of vegetative forms to human cells and isolated BslA ( B . anthracis S - l ayer protein A ). Its structural gene, bslA , is located on the pXO1 pathogenicity island (pXO1-90) and bslA expression is both necessary and sufficient for adherence of vegetative forms to host cells. BslA assembly into S-layers and surface exposure is presumably mediated by three N-terminal SLH domains. Twenty-three B. anthracis genes, whose products harbour similar SLH domains, may provide additional surface molecules that allow bacilli to engage cells or tissues of specific hosts during anthrax pathogenesis.  相似文献   

15.
The S-layer protein SbsB of the thermophilic, Gram-positive organism Bacillus stearothermophilus PV72/p2 forms a crystalline, porous array constituting the outermost component of the cell envelope. SbsB has a molecular mass of 98 kDa, and the corresponding S-layer exhibits an oblique lattice symmetry. To investigate the molecular structure and assembly of SbsB, we replaced 75 residues (mainly serine, threonine, and alanine), located throughout the primary sequence, with cysteine, which is not found in the wild-type protein. As determined by electron microscopy, 72 out of 75 mutants formed regularly-structured self-assembly products identical to wild-type, thereby proving that the replacement of most of the selected amino acids by cysteine does not dramatically alter the structure of the protein. The three defective mutants, which showed a greatly reduced ability to self-assemble, were, however, successfully incorporated into S-layers of wild-type protein. Monomeric SbsB mutants and SbsB mutants assembled into S-layers were subjected to a surface accessibility screen by targeted chemical modification with a 5-kDa hydrophilic cysteine-reactive polyethylene glycol conjugate. In the monomeric form of SbsB, 34 of the examined residues were not surface accessible, while 23 were classified as very accessible, and 18 were of intermediate surface accessibility. By contrast, in the assembled S-layers, 57 of the mutated residues were not accessible, six were very accessible, and 12 of intermediate accessibility. Together with other structural information, the results suggest a model for SbsB in which functional domains are segregated along the length of the polypeptide chain.  相似文献   

16.
In this study, application of magnetic beads (Dynabeads) coated with Aeromonas salmonicida lipopolysaccharide-specific polyclonal antisera to MS-based characterization of bacterial lipopolysaccharides has been evaluated. The results showed that the affinity-based preconcentration strategy resulted in at least a 100-fold increase in the detection of sensitivity, affording direct capillary electrophoresis (CE)-MS analysis of A. salmonicida lipopolysaccharide O-chain polysaccharide from in vitro- cultured cells. Subsequent CE-MS analysis of in vivo -grown cells of A. salmonicida confirmed significant changes in the structure of the lipopolysaccharide O-chain polysaccharide as a result of in vivo cultivation.  相似文献   

17.
Many species of Bacteria and Archaea posses a regularly structured surface layers (S-layers) as outermost cell envelope component. S-layers composed of a single protein or glycoprotein species. The individual subunits of S-layers interact with each other and with the supporting bacterial envelope component through non-covalent forces. Pores in the crystalline protein network are with mean diameter of 2-6 nm, the thickness of S-layer is 5-10 nm. The isolated S-layer subunits reassemble into two-dimensional crystalline arrays in solution, on solid supports, on planar lipid films. These unique features of S-layers have led to a broad spectrum applications. This review focuses on the structural properties S-layers and S-proteins and their applications with accent to using this structures in nanobiotechnology.  相似文献   

18.
The structural S-layer proteins of 28 different Corynebacterium glutamicum isolates have been analyzed systematically. Treatment of whole C. glutamicum cells with detergents resulted in the isolation of S-layer proteins with different apparent molecular masses, ranging in size from 55 to 66 kDa. The S-layer genes analyzed were characterized by coding regions ranging from 1,473 to 1,533 nucleotides coding for S-layer proteins with a size of 490-510 amino acids. Using PCR techniques, the corresponding S-layer genes of the 28 C. glutamicum isolates were all cloned and sequenced. The deduced amino acid sequences of the S-layer proteins showed identities between 69 and 98% and could be grouped into five phylogenetic classes. Furthermore, sequence analyses indicated that the S-layer proteins of the analyzed C. glutamicum isolates exhibit a mosaic structure of highly conserved and highly variable regions. Several conserved regions were assumed to play a key role in the formation of the C. glutamicum S-layers. Especially the N-terminal signal peptides and the C-terminal anchor sequences of the S-layer proteins showed a nearly perfect amino acid sequence conservation. Analyses by atomic force microscopy revealed a committed hexagonal structure. Morphological diversity of the C. glutamicum S-layers was observed in a class-specific unit cell dimension (ranging from 15.2 to 17.4 nm), which correlates with the sequence similarity-based classification. It could be demonstrated that differences in the primary structure of the S-layer proteins were reflected by the S-layer morphology.  相似文献   

19.
20.
S-layers are paracrystalline proteinaceous lattices that surround prokaryotic cells, forming a critical interface between the cells and their extracellular environment. Here, we report the discovery of a novel S-layer protein present in the Gram-negative marine organism, Pseudoalteromonas tunicata D2. An uncharacterized protein (EAR28894) was identified as the most abundant protein in planktonic cultures and biofilms. Bioinformatic methods predicted a beta-helical structure for EAR28894 similar to the Caulobacter S-layer protein, RsaA, despite sharing less than 20% sequence identity. Transmission electron microscopy revealed that purified EAR28894 protein assembled into paracrystalline sheets with a unique square lattice symmetry and a unit cell spacing of ~9.1 nm. An S-layer was found surrounding the outer membrane in wild-type cells and completely removed from cells in an EAR28894 deletion mutant. S-layer material also appeared to be “shed” from wild-type cells and was highly abundant in the extracellular matrix where it is associated with outer membrane vesicles and other matrix components. EAR28894 and its homologs form a new family of S-layer proteins that are widely distributed in Gammaproteobacteria including species of Pseudoalteromonas and Vibrio, and found exclusively in marine metagenomes. We propose the name Slr4 for this novel protein family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号