首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A taxonomic review of the Korean Lymantria Hübner, 1819 was conducted. A total of nine species of five subgenera with two unrecorded species are listed: Lymantria (Porthetria) dispar Linnaeus 1758, L. (P.) xylina Swinhoe 1903, L. (Lymantria) monacha (Linnaeus 1758), L. (L.) minomonis Matsumura 1933 (new to Korea), L. (L.) similis monachoides Schintlimeister 2004 (new to Korea), L. (L.) lucescens (Butler 1881), L. (Nyctria) mathura Moore 1865, L. (Collentria) fumida Butler 1877, and L. (Spinotria) bantaizana Matsumura 1933. Lymantria (Lymantria) minomonis and L. (L.) similis monachoides are newly added to the Korean fauna. Lymantria (L.) minomonis was found only on Bogildo Island of Jeollanam‐do in the southern part of Korea, and L. (L.) similis monachoides was collected in central Korea. Lymantria (Porthetria) xylina and L. (Collentria) fumida were not examined in this study, and it is considered that the previous records were due to misidentification or they are only distributed in the northern part of the Korean Peninsula. We provide diagnoses of two unrecorded species and adult habitus and genitalia photos of the Korean Lymantria species.  相似文献   

3.
New records of freshwater rotifers (Rotifera) from Indian waters   总被引:1,自引:1,他引:0  
S. S. S. Sarma 《Hydrobiologia》1988,160(3):263-269
This study adds 25 rotifer species to the fauna of India viz.Cyrtonia tuba (Ehrb.)Epiphanes macrourus (Barrois & Daday),Liliferotrocha subtilis (Rodewald),Microcodides chleana (Gosse),Brachionus dimidiatus (Bryce),Keratella ticinensis Carlin,Notholca labis (Gosse),Platyias leloupi (Gillard),Euchlanis incisa Carlin,Mytilina bisulcata (Lucks),Wolga spinifera (Western),Lecane (Lecane)althausi Rudescu,L. (L.)doryssa Harring,L. (L.)elongata Harring & Myers,L. (Monostyla)bifurca (Bryce)L. (M.)lamellata thalera (Harring & Myers),L. (Hemimonostyla)blachei Berzins,Cephalodella giganthea Remane,Monommata arndti Remane,Trichocerca (Trichocerca)pusilla (Lauterborn),Testudinella emarginula (Stenroos),Ptygura melicerta Ehrb,P. tacita Edmondson,Filinia cornuta (Weisse),Collotheca mutabilis (Hudson),C. ornata (Ehrb.) andC. trilobata (Collins).B. dimidiatus andP. leloupi are new records from Delhi Region.  相似文献   

4.
Abstract Phytomyza Fallén is the largest genus of leaf‐mining flies (Agromyzidae), with over 530 described species. Species of the superficially similar genus Chromatomyia Hardy have been included in Phytomyza by some authors and the status of the genus remains uncertain. Using 3076 bp of DNA sequence from three genes [cytochrome oxidase I (COI), CAD (rudimentary), phosphogluconate dehydrogenase (PGD)] and 113 exemplar species, we identified and tested the monophyly of host‐associated species groups in Phytomyza and Chromatomyia and investigated the phylogenetic relationships among these groups. Chromatomyia is polyphyletic and nested largely within Phytomyza; two small groups of species, however, are related more closely to Ptochomyza and Napomyza. Therefore, we synonymize Chromatomyia syn.n. , Ptochomyza syn.n. , and Napomyza syn.n. with Phytomyza, recognizing Ptochomyza, Napomyza and Phytomyza sensu stricto as subgenera of Phytomyza. We recognize five major clades within Phytomyza sensu stricto that comprise the majority of species ascribed previously to Chromatomyia and Phytomyza. Many species groups recognized previously were recovered as monophyletic, or virtually so, but some (e.g. robustella and atomaria groups) required emendation. On the basis of the proposed phylogeny and recent taxonomic literature, we present a preliminary revision of 24 species groups within Phytomyza, but leave many species unplaced. Evolution of internal pupariation (within the host’s tissue), regarded as a defining character of the former Chromatomyia, is discussed with regard to the new phylogeny, and we suggest a correlation with stem or leaf midrib mining. The large size of the Phytomyza lineage and an inferred pattern of host family‐specific species radiations make it a promising candidate for the study of macroevolutionary patterns of host shift and diversification in phytophagous insects. The proposed generic synonymies necessitate a number of new combinations. The following 46 species described in Chromatomyia are transferred to Phytomyza: P. actinidiae (Sasakawa) comb.n. , P. alopecuri (Griffiths) comb.n. , P. arctagrostidis (Griffiths) comb.n. , P. beigerae (Griffiths) comb.n. , P. blackstoniae (Spencer) comb.n. , P. centaurii (Spencer) comb.n. , P. chamaemetabola (Griffiths) comb.n. , P. cinnae (Griffiths) comb.n. , P. compta (Spencer) comb.n. , P. cygnicollina (Griffiths) comb.n. , P. doolittlei (Spencer) comb.n. , P. elgonensis (Spencer) comb.n. , P. eriodictyi (Spencer) comb.n. , P. flavida (Spencer) comb.n. , P. fricki (Griffiths) comb.n. , P. furcata (Griffiths) comb.n. , P. griffithsiana (Beiger) comb.n. , P. hoppiella (Spencer) comb.n. , P. ixeridopsis (Griffiths) comb.n. , P. kluanensis (Griffiths) comb.n. , P. leptargyreae (Griffiths) comb.n. , P. linnaeae (Griffiths) comb.n. , P. luzulivora (Spencer) comb.n. , P. mimuli (Spencer) comb.n. , P. mitchelli (Spencer) comb.n. , P. montella (Spencer) comb.n. , P. nigrilineata (Griffiths) comb.n. , P. nigrissima (Spencer) comb.n. , P. orbitella (Spencer) comb.n. , P. paraciliata (Godfray) comb.n. , P. poae (Griffiths) comb.n. , P. pseudomilii (Griffiths) comb.n. , P. qinghaiensis (Gu) comb.n. , P. rhaetica (Griffiths) comb.n. , P. scabiosella (Beiger) comb.n. , P. seneciophila (Spencer) comb.n. , P. shepherdiana (Griffiths) comb.n. , P. spenceriana (Griffiths) comb.n. , P. styriaca (Griffiths) comb.n. , P. subnigra (Spencer) comb.n. , P. suikazurae (Sasakawa) comb.n. , P. symphoricarpi (Griffiths) comb.n. , P. syngenesiae (Hardy) comb.n. , P. thermarum (Griffiths) comb.n. , P. torrentium (Griffiths) comb.n. and P. tschirnhausi (Griffiths) comb.n. Furthermore, we transfer all species of Napomyza to Phytomyza, resulting in the following new combinations: P. achilleanella (Tschirnhaus) comb.n. , P. acutiventris (Zlobin) comb.n. , P. angulata (Zlobin) comb.n. , P. arcticola (Spencer) comb.n. , P. bellidis (Griffiths) comb.n. , P. carotae (Spencer) comb.n. , P. cichorii (Spencer) comb.n. , P. curvipes (Zlobin) comb.n. , P. dubia (Zlobin) comb.n. , P. filipenduliphila (Zlobin) comb.n. , P. flavivertex (Zlobin) comb.n. , P. flavohumeralis (Zlobin) comb.n. , P. genualis (Zlobin) comb.n. , P. grandella (Spencer) comb.n. , P. humeralis (Zlobin) comb.n. , P. immanis (Spencer) comb.n. , P. immerita (Spencer) comb.n. , P. inquilina (Kock) comb.n. , P. kandybinae (Zlobin) comb.n. , P. lacustris (Zlobin) comb.n. , P. laterella (Zlobin) comb.n. , P. manni (Spencer) comb.n. , P. maritima (Tschirnhaus) comb.n. , P. merita (Zlobin) comb.n. , P. mimula (Spencer) comb.n. , P. minuta (Spencer) comb.n. , P. montanoides (Spencer) comb.n. , P. neglecta (Zlobin) comb.n. , P. nigriceps (van der Wulp) comb.n. , P. nugax (Spencer) comb.n. , P. pallens (Spencer) comb.n. , P. paratripolii (Chen & Wang) comb.n. , P. plumea (Spencer) comb.n. , P. plumigera (Zlobin) comb.n. , P. prima (Zlobin) comb.n. , P. pubescens (Zlobin) comb.n. , P. schusteri (Spencer) comb.n. , P. scrophulariae (Spencer) comb.n. , P. suda (Spencer) comb.n. , P. tanaitica (Zlobin) comb.n. , P. tenuifrons (Zlobin) comb.n. , P. vivida (Spencer) comb.n. , P. xizangensis (Chen & Wang) comb.n. and P. zimini (Zlobin) comb.n. Phytomyza asparagi (Hering) comb.n. and P. asparagivora (Spencer) comb.n. are transferred from Ptochomyza. In Phytomyza ten new names are proposed for secondary homonyms created by generic synonymy: P. echo Winkler nom.n. for P. manni Spencer, 1986; P. californiensis Winkler nom.n. for C. montana Spencer, 1981 ; P. griffithsella Winkler nom.n. for C. griffithsi Spencer, 1986; P. vockerothi Winkler nom.n. for C. nigrella Spencer, 1986; P. kerzhneri Winkler nom.n. for N. nigricoxa Zlobin, 1993; P. asteroides Winkler nom.n. for N. tripolii Spencer, 1966; P. minimoides Winkler nom.n. for N. minima Zlobin, 1994; P. nana Winkler nom.n. for N. minutissima Zlobin, 1994; P. ussuriensis Winkler nom.n. for N. mimica Zlobin, 1994 and P. zlobini Winkler nom.n. for N. hirta Zlobin, 1994.  相似文献   

5.
Six clades are inferred from a phylogenetic analysis including 42 species belonging to the Empis (Coptophlebia) hyalea‐group. These clades are named as follows: E. (C.) acris, E. (C.) aspina, E. (C.) atratata, E. (C.) hyalea, E. (C.) jacobsoni and E. (C.) nahaeoensis. The presence of two dorsal more or less developed epandrial projections is considered autapomorphic for the E. (C.) hyalea‐group in addition to two characters previously found to support the monophyly of this group (presence of an unsclerotized zone in the middle of labella and epandrium unpaired). Amongst the cladistically analysed species, 24 are newly described [ E. ( C. ) acris , E. ( C. ) aspina , E. ( C. ) cameronensis , E. ( C. ) duplex , E. ( C. ) incurva , E. ( C. ) inferiseta , E. ( C. ) kuaensis , E. ( C. ) lachaisei , E. ( C. ) lamellalta , E. ( C. ) lata , E. ( C. ) loici , E. ( C. ) longiseta , E. ( C. ) mengyangensis , E. ( C. ) menglunensis , E. ( C. ) missai , E. ( C. ) nimbaensis , E. ( C. ) padangensis , E. ( C. ) parvula , E. ( C. ) projecta , E. ( C. ) pseudonahaeoensis , E. ( C. ) submetallica , E. ( C. ) urumae , E. ( C. ) vitisalutatoris and E. ( C. ) woitapensis ], five are reviewed [E. (C.) hyalea Melander, E. (C.) jacobsoni De Meijere, E. (C.) ostentator Melander, E. (C.) sinensis Melander and E. (C.) thiasotes Melander] and 13 were recently described in two previous papers. Two additional species, E. (C.) abbrevinervis De Meijere and E. (C.) multipennata Melander, are also reviewed but not included in the cladistic analysis since they are only known from the female. A lectotype is designated for E. (C.) jacobsoni. A key is provided to the six clades of the E. (C.) hyalea‐group as well as to species of each clade. A catalogue of the E. (C.) hyalea‐group, including 72 species, is given. The taxonomic status of 25 additional species mainly described by Bezzi and Brunetti, from the Oriental and Australasian regions, is discussed. The E. (C.) hyalea‐group is firstly recorded from the Palaearctic Region and Australia. Finally, the distribution and the habitats of the species compared with their phylogeny suggest a possible relationship between the diversification of the group and forest fragmentations during the Quaternary. © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society, 2005, 145 , 339–391.  相似文献   

6.
This study provides data on the phylogeny, taxonomy and distribution of 14 known and five new species of the Neotropical genus Veturius Kaup (Proculini), belonging to various subgenera and species groups: V. (Veturius) latissimus n. sp. (Colombia, Central Andes) and V. (V.) calimanus n. sp. (Pacific slope of the Occidental Cordillera) are separated from V. (V.) caquetaensis Boucher, 1988, which seems restricted to the Amazonian slope of the Oriental Cordillera (Caquetá, Putumayo); V. (V.) sinuatomarginatus Luederwaldt, 1941 (Costa Rica), n. syn. of V. sinuatocollis Kuwert, 1890; V. sinuatocollis aculeatus Luederwaldt, 1941 (syntype from Costa Rica); V. (V.) aspina Kuwert, 1898 (located in Occidente of Ecuador, Guayaquil); V. (V.) yahua Boucher, 2006 (located in Occidente of Ecuador, Pichincha and SW Colombia, Nariño); V. (V.) guntheri Kuwert, 1898 (located in Peru, SE Puno and Colombia, W Putumayo); V. (V.) cephalotes (Le Peletier & Serville, 1825) (citation from Guyana); V. (V.) sinuatus (Eschscholtz, 1829) (previous synonymy); V. (V.) libericornis Kuwert, 1891 (located in Peru, Cuzco); V. (V.) lepidus Fonseca, 1999 (revision; located in Colombia, Amazonas, Putumayo and Peru, Loreto); V. (V.) transversus (Dalman, 1817) [syntype; previous synonymy of V. trituberculatus (Eschscholtz, 1829) with V. assimilis (Weber, 1801) and located in Brazil, Mato Grosso]; V. (V.) sinuosus (Drapiez, 1820) (corrected reference for Colombia); V. (Publius) crassus (Smith, 1852) (new syntype); V. (P.) danieli Boucher, 2006 (holotype deposit); V. (P.) vazdemelloi Boucher, n. sp. (Andes of Ecuador, Azuay); V. (Ouayana) unicornis Gravely, 1918 (located in Colombia, E Vaupés); V. (O.) costaianus Boucher, n. sp. (Venezuela, Amazonas, NW Pacaraima Massif); Ticoisthmus Boucher, n. subg., for the species group of V. (O.) laevior (Kaup, 1868), of southern Central America; and V. (T.) brachypterus Boucher, n. sp. (Costa Rica, Sierra Talamanca). Ticoisthmus is considered the sister group of Ouayana. It belongs to the Meso-American low mountain dispersion pattern and demonstrates, especially in the genus Veturius, but also more generally in the Neotropical passalids, the hot-spot characteristics, with diversity and endemism, of the narrow land between the Depression of Nicaragua and the Isthmus of Panama.  相似文献   

7.
为了合理利用和保护天敌进行卵形短须螨、双斑长跗萤叶甲和假眼小绿叶蝉的综合防治,用灰色系统分析方法和生态位分析法对合肥地区白毫早茶园3种主要害虫与其捕食性天敌在数量、时间、空间等方面关系进行分析,利用害虫与天敌关系密切指数之和综合评判9种天敌与3种害虫关系密切的前四位天敌。2015年卵形短须螨的前四位天敌是鳞纹肖蛸(5.3079)、三突花蟹蛛(5.1716)、锥腹肖蛸(4.8367)和草间小黑蛛(4.7869);2016年前四位天敌依次是三突花蟹蛛(5.3975)、鳞纹肖蛸(4.9414)、茶色新圆蛛(4.8757)、锥腹肖蛸(4.6815)。对两年结果综合分析,卵形短须螨的前四位天敌依次是三突花蟹蛛(10.5691)、鳞纹肖蛸(10.2493)、茶色新圆蛛(9.6353)和锥腹肖蛸(9.5182)。2015年双斑长跗萤叶甲的前四位天敌依次是锥腹肖蛸(5.6926)、异色瓢虫(5.6976)、八斑球腹蛛(5.5101)和斜纹猫蛛(5.4552);2016年依次是茶色新圆蛛(5.2909)、锥腹肖蛸(5.2710)、鳞纹肖蛸(5.1063)和斜纹猫蛛(5.0703)。对两年结果综合评判,双...  相似文献   

8.
Higher‐level relationships within Aedini, the largest tribe of Culicidae, are explored using morphological characters of eggs, fourth‐instar larvae, pupae, and adult females and males. In total, 172 characters were examined for 119 exemplar species representing the existing 12 genera and 56 subgenera recognized within the tribe. The data for immature and adult stages were analysed separately and in combination using equal (EW) and implied weighting (IW). Since the classification of Aedini is based mainly on adult morphology, we first tested whether adult data alone would support the existing classification. Overall, the results of these analyses did not reflect the generic classification of the tribe. The tribe as a whole was portrayed as a polyphyletic assemblage of Aedes and Ochlerotatus within which eight (EW) or seven (IW) other genera were embedded. Strict consensus trees (SCTs) derived from analyses of the immature stages data were almost completely unresolved. Combining the adult and immature stages data resulted in fewer most parsimonious cladograms (MPCs) and a more resolved SCT than was found when either of the two data subsets was analysed separately. However, the recovered relationships were still unsatisfactory. Except for the additional recovery of Armigeres as a monophyletic genus, the groups recovered in the EW analysis of the combined data were those found in the EW analysis of adult data. The IW analysis of the total data yielded eight MPCs consisting of three sets of two mutually exclusive topologies that occurred in all possible combinations. We carefully studied the different hypotheses of character transformation responsible for each of the alternative patterns of relationship but were unable to select one of the eight MPCs as a preferred cladogram. Overall, the relationships within the SCT of the eight MPCs were a significant improvement over those found by equal weighting. Aedini and all existing genera except Ochlerotatus and Aedes were recovered as monophyletic. Ochlerotatus formed a polyphyletic assemblage basal to Aedes. This group included Haemagogus and Psorophora, and also Opifex in a sister‐group relationship with Oc. (Not.) chathamicus. Aedes was polyphyletic relative to seven other genera, Armigeres, Ayurakitia, Eretmapodites, Heizmannia, Udaya, Verrallina and Zeugnomyia. With the exception of Ae. (Aedimorphus), Oc. (Finlaya), Oc. (Ochlerotatus) and Oc. (Protomacleaya), all subgenera with two or more species included in the analysis were recovered as monophyletic. Rather than leave the generic classification of Aedini in its current chaotic state, we decided a reasonable and conservative compromise classification would be to recognize as genera those groups that are ‘weighting independent’, i.e. those that are common to the results of both the EW and IW analyses of the total data. The SCT of these combined analyses resulted in a topology of 29 clades, each comprising between two and nine taxa, and 30 taxa (including Mansonia) in an unresolved basal polytomy. In addition to ten genera (Armigeres, Ayurakitia, Eretmapodites, Haemagogus, Heizmannia, Opifex, Psorophora, Udaya, Verrallina and Zeugnomyia), generic status is proposed for the following: (i) 32 existing subgenera of Aedes and Ochlerotatus, including nine monobasic subgenera within the basal polytomy, i.e. Ae. (Belkinius), Ae. (Fredwardsius), Ae. (Indusius), Ae. (Isoaedes), Ae. (Leptosomatomyia), Oc. (Abraedes), Oc. (Aztecaedes), Oc. (Gymnometopa) and Oc. (Kompia); (ii) three small subgenera within the basal polytomy that are undoubtedly monophyletic, i.e. Ae. (Huaedes), Ae. (Skusea) and Oc. (Levua), and (iii) another 20 subgenera that fall within the resolved part of the SCT, i.e. Ae. (Aedes), Ae. (Alanstonea), Ae. (Albuginosus), Ae. (Bothaella), Ae. (Christophersiomyia), Ae. (Diceromyia), Ae. (Edwardsaedes), Ae. (Lorrainea), Ae. (Neomelaniconion), Ae. (Paraedes), Ae. (Pseudarmigeres), Ae. (Scutomyia), Ae. (Stegomyia), Oc. (Geoskusea), Oc. (Halaedes), Oc. (Howardina), Oc. (Kenknightia), Oc. (Mucidus), Oc. (Rhinoskusea) and Oc. (Zavortinkius). A clade consisting of Oc. (Fin.) kochi, Oc. (Fin.) poicilius and relatives is raised to generic rank as Finlaya, and Downsiomyia Vargas is reinstated from synonymy with Finlaya as the generic name for the clade comprising Oc. (Fin.) leonis, Oc. (Fin.) niveus and their relatives. Three other species of Finlaya?Oc. (Fin.) chrysolineatus, Oc. (Fin.) geniculatus and Oc. (Fin.) macfarlanei? fall within the basal polytomy and are treated as Oc. (Finlaya) incertae sedis. Ochlerotatus (Ochlerotatus) is divided into three lineages, two of which, Oc. (Och.) atropalpus and Oc. (Och.) muelleri, are part of the basal polytomy. The remaining seven taxa of Oc. (Ochlerotatus) analysed, including the type species, form a reasonably well‐supported group that is regarded as Ochlerotatus s.s. Ochlerotatus (Rusticoidus) is retained as a subgenus within Ochlerotatus s.s. Ochlerotatus (Nothoskusea) is recognized as a subgenus of Opifex based on two unique features that support their sister‐group relationship. A new genus, Tanakaius gen. nov. , is proposed for Oc. (Fin.) togoi and the related species Oc. (Fin.) savoryi. The taxonomic status and generic placement of all currently valid species of Aedini are listed in an appendix. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142 , 289?368.  相似文献   

9.
This paper summarizes the data on the oribatid mite fauna of the family Suctobelbidae Grandjean, 1954, recorded from the Caucasus. The distribution of 47 species of the genera Suctobelba Paoli, 1908, Suctobelbella Jacot, 1937, and Suctobelbila Jacot, 1937 in the territory of the Caucasus is shown. The following five new species and four new subspecies are described: Suctobelba cornigera sp. n., S. flagelliseta sp. n., S. scalpellata caucasica ssp. n., Suctobelbella (Suctobelbella) liacariformis sp. n., S. (S.) acutidens pilososetosa ssp. n., S. (S.) subcornigera maculata ssp. n., S. (Flagrosuctobelba) diversosetosa arilloi ssp. n., S. (F.) nana sp. n., and S. (F.) sensillinuda sp. n. Four species belonging to the genus Suctobelbella changed their status: S. (S.) acutidens duplex (Strenzke, 1950) stat. n., S. (S.) acutidens sarekensis (Forsslund, 1941) stat. n., S. (S.) subcornigera vera (Moritz, 1964) stat. n. and S. (Flagrosuctobelba) forsslundi moritzi Mahunka, 1987 stat. n. S. (S.) hammerae (Krivolutsky, 1965) was synonymized to S. (S.) acutidens duplex. The genus Suctobelbila and the species Suctobelbila dentata europaea Moritz, 1974, Suctobelba altvateri Moritz, 1970, S. atomaria Moritz, 1970, S. secta Moritz, 1970, Suctobelbella (S.) acutidens sarekensis, S. (S.) hastata Pankow, 1986, S. (S.) subcornigera vera stat. n., S. (Flagrosuctobelba) ancorhina Chinone, 2003, S. (F.) elegantula (Hammer, 1958), S (F.) flagellifera Chinone, 2003, S (F.) granifera Chinone, 2003, S. (F.) forsslundi moritzi Mahunka, 1987 stat. n., and S. (F.) multiplumosa (Hammer, 1979) are recorded from the Caucasus for the first time. A key to the species is given.  相似文献   

10.
Four new subgenera, nineteen new species, two new subspecies and two new varieties of Cyperus L. are described, viz. subgen. Aristomariscus Lye, subgen. Bulbomariscus Lye, subgen. Xerocyperus Lye, subgen. Micromariscus Lye, Cyperus micromariscus Lye, C. boreochrysocephalus Lye, C. crassivaginatus Lye, C. kyllingaeformis Lye, C. cremeomariscus Lye, C. gigantobulbes Lye, C. boreobellus Lye, C. longi–involucralus Lye, C. kwaleensis Lye, C. afrovaricus Lye, C. afrodunensis Lye, C flavoculmis Lye, C microumbellatus Lye, C. purpureoviridis Lye, C. graciliculmis Lye, C. afromon–tanus Lye, C. nyererei Lye, C. afroalpinus Lye, C castaneobellus Lye, C. soyauxii Boeck. ssp. pallescens Lye, C. usitatus Burch. ssp. palmatus Lye, C. renschii Boeck. var. scabridus Lye, and C. fischerianus A. Rich. var. ugandensis Lye. The following new combinations are made: Cyperus L. subgen. Bulbocaulis (C.B.C1.) Lye, Cyperus L. subgen. Courtoisia (Nees) Lye, Cyperus L. subgen. Sorostachys (Steudel) Lye, Cyperus L. subgen. Remirea (Aublet) Lye, Cyperus L. subgen. Alinula (Raynal) Lye, Cyperus lipocarphoides (Kükenth.) Lye, C. malawicus (Raynal) Lye, C. tanganyica–nus (Kiikenth.) Lye, C. mortonii (Hooper) Lye, C. pseudodiaphanus (Hooper) Lye, C. overlaetii (Hooper & Raynal) Lye, C. dewildeorum (Raynal) Lye, C. pagotii (Raynal) Lye, C. demangei (Raynal) Lye, C. afroechinatus Lye, C. niveus Retz. var. ledermannii (Kiikenth.) Lye, C. niveus Retz. var. tisserantii (Cherm.) Lye, C. distans L.f. ssp. longibracteatus (Cherm.) Lye, C. distans L.f. ssp. longibracteatus (Cherm.) Lye, var. rubrotinctus (Cherm.) Lye, C. cyperoides (L.) Kuntze ssp. alternifolius (Vahl) Lye, C. cyperoides (L.) Kuntze ssp. macrocarpus (Kunth) Lye, C. cyperoides (L.) Kuntze ssp. pseudoflavus (Clarke) Lye, C. dubius Rottb. ssp. macrocephalus (Kiikenth.) Lye, C. dubius Rottb. ssp. coloratus (Vahl) Lye, C. usitatus Burch. var. stuhlmannii (Clarke) Lye, C. laxus Lam. ssp. sylvestris (Ridley) Lye, and C. laxus Lam. ssp. buchholzii (Boeck.) Lye and C. globifer (Clarke) Lye.  相似文献   

11.
Petr Šmarda 《Biologia》2008,63(3):349-367
Using flow cytometry in fresh plants and herbarium vouchers, DNA ploidy levels for 411 individuals of 44 taxa of the genus Festuca, including 4 natural hybrids, originating from 237 sites in Austria, Bulgaria, Croatia, Czech Republic, Estonia, Germany, Hungary, Italy, Poland, Romania, Slovakia, Slovenia, and Switzerland were estimated. The following taxa and DNA ploidy levels are reported: F. airoides (2n ≈ 2x), F. alpestris (2n ≈ 2x), F. alpina s.l. (2n ≈ 2x), F. amethystina subsp. amethystina (2n ≈ 4x), F. bosniaca subsp. bosniaca (2n ≈ 2x), F. brevipila (2n ≈ 6x), F. bucegiensis (2n ≈ 2x), F. carnuntina (2n ≈ 6x), F. csikhegyensis (2n ≈ 4x), F. csikhegyensis × F. eggleri (2n ≈ 4x), F. dalmatica (2n ≈ 4x), F. duvalii (2n ≈ 4x), F. eggleri (2n ≈ 2x, 4x), F. filiformis (2n ≈ 2x), F. glauca (2n ≈ 6x), F. heterophylla (2n ≈ 4x), F. inops (2n ≈ 2x), F. laevigata (2n ≈ 8x), F. laxa (2n ≈ 4x), F. lemanii (2n ≈ 6x), F. norica (2n ≈ 2x), F. ovina subsp. ovina (2n ≈ 2x), F. ovina subsp. guesfalica (2n ≈ 4x), F. ovina × F. pallens (2n ≈ 4x), F. pallens (2n ≈ 2x, 3x), F. pallens × F. pseudodalmatica (2n ≈ 3x, 4x), F. pirinica (2n ≈ 2x), F. polesica (2n ≈ 2x), F. psammophila subsp. dominii (2n ≈ 2x), F. pseudodalmatica (2n ≈ 4x), F. pseudovina (2n ≈ 2x), F. quadriflora (2n ≈ 4x), F. rupicola (2n ≈ 6x), F. rupicola × F. vaginata (2n ≈ 3x, 4x), F. saxatilis (2n ≈ 6x), F. stricta subsp. bauzanina (2n ≈ 8x), F. supina (2n ≈ 4x), F. tatrae (2n ≈ 2x), F. valesiaca (2n ≈ 2x), F. versicolor subsp. pallidula (2n ≈ 2x), F. versicolor subsp. versicolor (2n ≈ 2x), F. violacea subsp. puccinellii (2n ≈ 2x), F. wagneri (2n ≈ 4x), F. xanthina (2n ≈ 2x). In F. pallens, up to 12-year-old herbarium specimens were proved to be suitable for DNA ploidy level measurements with flow cytometry. DNA ploidy levels of F. bucegiensis, F. bosniaca, and F. versicolor subsp. pallidula are reported here for the first time. The taxonomy of some polyploid complexes and several records of mixed ploidy level populations are briefly discussed. Festuca pseudodalmatica and its hybrid F. × krizoviensis were first recognised as native to the Czech Republic, and F. brevipila as native to Hungary. Also some new records of F. filiformis, F. brevipila, and F. wagneri from Slovakia are reported.  相似文献   

12.
Turner , B. L., W. L. Ellison , and R. M. King . (U. Texas, Austin.) Chromosome numbers in the Compositae. IV. North American species, with phyletic interpretations. Amer. Jour. Bot. 48(3): 216–223. Illus. 1961.—Chromosome counts from 116 different plant populations representing 75 taxa (72 species in 39 genera) are reported. These include the first species counts for the following genera: Actinospermum (x = 19), Baltimora (x =15), Calea (x = ca. 17, 18), Calyptocarpus (x = 12), Hecubaea (x = 17), Lagascea (x = 17), Schistocarpha (x = 8), Melanthera (x = 15), Pectis (x = 12), Perymenium (x = 15), Sanvitalia (x = 8), and Trigonospermum (x = 15). Chromosome counts for Chrysopsis trichophylla (n = 5), Cirsium horridulum (n = 16), Hidalgoa ternata (n = 16,) Tridax balbisioides (n = 10), Tridax trilobata (n = 10), and Verbesina crocata (n =18) differ from the reported basic numbers as determined from other species in these genera. Taxa closely related to Tridax procumbens were found to have the diploid number n = 9, thus establishing the polyploid nature (n = 18) of this widespread polymorphic species. When appropriate, the chromosomal information has been related to systematic problems.  相似文献   

13.
A total of 25 items are listed. 16 are new taxa described from South and East Anatolia:Papaver (1),Heldreichia (1),Astragalus (1),Lotus (1),Onobrychis (3),Sempervivum (2),Hellenocarum (1),Cirsium (2),Campanula (1),Omphalodes (1),Allium (1) andPuccinellia (1). Nine other species belonging to the generaDiplotaxis, Beta, Acacia, Lupinus, Cirsium, Limonium, Calamagrostis andPuccinellia, are new records for the Flora of Turkey area. Two combinations are made, one inPapaver (p. 113), the other inHellenocarum (p. 122).  相似文献   

14.
The phylogeny and classification of tribe Aedini are delineated based on a cladistic analysis of 336 characters from eggs, fourth‐instar larvae, pupae, adult females and males, and immature stage habitat coded for 270 exemplar species, including an outgroup of four species from different non‐aedine genera. Analyses of the data set with all multistate characters treated as unordered under implied weights, implemented by TNT version 1.1, with values of the concavity constant K ranging from 7 to 12 each produced a single most parsimonious cladogram (MPC). The MPCs obtained with K values of 7–9 were identical, and that for K = 10 differed only in small changes in the relationships within one subclade. Because values of K < 7 and > 10 produced large changes in the relationships among the taxa, the stability of relationships exemplified by the MPC obtained from the K = 9 analysis is used to interpret the phylogeny and classification of Aedini. Clade support was assessed using parsimony jackknife and symmetric resampling. Overall, the results reinforce the patterns of relationships obtained previously despite differences in the taxa and characters included in the analyses. With two exceptions, all of the groups represented by two or more species were once again recovered as monophyletic taxa. Thus, the monophyly of the following genera and subgenera is corroborated: Aedes, Albuginosus, Armigeres (and its two subgenera), Ayurakitia, Bothaella, Bruceharrisonius, Christophersiomyia, Collessius (and its two subgenera), Dahliana, Danielsia, Dobrotworskyius, Downsiomyia, Edwardsaedes, Finlaya, Georgecraigius (and its two subgenera), Eretmapodites, Geoskusea, Gilesius, Haemagogus (and its two subgenera), Heizmannia (and subgenus Heizmannia), Hopkinsius (and its two subgenera), Howardina, Hulecoeteomyia, Jarnellius, Kenknightia, Lorrainea, Macleaya, Mucidus (and its two subgenera), Neomelaniconion, Ochlerotatus (subgenera Chrysoconops, Culicelsa, Gilesia, Pholeomyia, Protoculex, Rusticoidus and Pseudoskusea), Opifex, Paraedes, Patmarksia, Phagomyia, Pseudarmigeres, Rhinoskusea, Psorophora (and its three subgenera), Rampamyia, Scutomyia, Stegomyia, Tanakaius, Udaya, Vansomerenis, Verrallina (and subgenera Harbachius and Neomacleaya), Zavortinkius and Zeugnomyia. In addition, the monophyly of Tewarius, newly added to the data set, is confirmed. Heizmannia (Mattinglyia) and Verrallina (Verrallina) were found to be paraphyletic with respect to Heizmannia (Heizmannia) and Verrallina (Neomacleaya), respectively. The analyses were repeated with the 14 characters derived from length measurements treated as ordered. Although somewhat different patterns of relationships among the genera and subgenera were found, all were recovered as monophyletic taxa with the sole exception of Dendroskusea stat. nov. Fifteen additional genera, three of which are new, and 12 additional subgenera, 11 of which are new, are proposed for monophyletic clades, and a few lineages represented by a single species, based on tree topology, the principle of equivalent rank, branch support and the number and nature of the characters that support the branches. Acartomyia stat. nov. , Aedimorphus stat. nov. , Cancraedes stat. nov. , Cornetius stat. nov. , Geoskusea stat. nov. , Levua stat. nov. , Lewnielsenius stat. nov. , Rhinoskusea stat. nov. and Sallumia stat. nov., which were previously recognized as subgenera of various genera, are elevated to generic status. Catageiomyia stat. nov. and Polyleptiomyia stat. nov. are resurrected from synonymy with Aedimorphus, and Catatassomyia stat. nov. and Dendroskusea stat. nov. are resurrected from synonymy with Diceromyia. Bifidistylus gen. nov. (type species: Aedes lamborni Edwards) and Elpeytonius gen. nov. (type species: Ochlerotatus apicoannulatus Edwards) are described as new for species previously included in Aedes (Aedimorphus), and Petermattinglyius gen. nov. (type species: Aedes iyengari Edwards) and Pe. (Aglaonotus) subgen. nov. (type species: Aedes whartoni Mattingly) are described as new for species previously included in Aedes (Diceromyia). Four additional subgenera are recognized for species of Ochlerotatus, including Oc. (Culicada) stat. nov. (type species: Culex canadensis Theobald), Oc. (Juppius) subgen. nov. (type species: Grabhamia caballa Theobald), Oc. (Lepidokeneon) subgen. nov. (type species: Aedes spilotus Marks) and Oc. (Woodius) subgen. nov. (type species: Aedes intrudens Dyar), and seven are proposed for species of Stegomyia: St. (Actinothrix) subgen. nov. (type species: Stegomyia edwardsi Barraud), St. (Bohartius) subgen. nov. (type species: Aedes pandani Stone), St. (Heteraspidion) subgen. nov. (type species: Stegomyia annandalei Theobald), St. (Huangmyia) subgen. nov. (type species: Stegomyia mediopunctata Theobald), St. (Mukwaya) subgen. nov. (type species: Stegomyia simpsoni Theobald), St. (Xyele) subgen. nov. (type species: Stegomyia desmotes Giles) and St. (Zoromorphus) subgen. nov. (type species: Aedes futunae Belkin). Due to the unavailability of specimens for study, many species of Stegomyia are without subgeneric placement. As is usual with generic‐level groups of Aedini, the newly recognized genera and subgenera are polythetic taxa that are diagnosed by unique combinations of characters. The analysis corroborates the previous observation that ‘Oc. (Protomacleaya)’ is a polyphyletic assemblage of species.  相似文献   

15.
Fifty-two endophytic fungi strains with different colony morphologies were isolated from stems, leaves and roots of Huperzia serrata (Thunb. ex Murray) Trevis. collected from Bawangling Reserve of Hainan Province in southern China. They were identified mainly based on rDNA ITS sequences and phylogenetic analysis. The results showed that all strains belonged to four classes, i.e. Sordariomycetes (92.31%), Dothideomycetes (3.85%), Pezizomycetes (1.92%) and Agaricomycetes (1.92%). Forty-seven strains were identified at the genus level, including Glomerella (Colletotrichum), Hypocrea (Trichoderma), Pleurostoma, Chaetomium, Coniochaeta (Lecythophora), Daldinia, Xylaria, Hypoxylon, Nodulisporium, Cazia and Phellinus. As to the other five strains, three were identified at the order level and two at the family level, indicating that a great diversity of fungi taxa exists in H. serrata. Most isolated strains belonged to the genus of Glomerella (Colletotrichum) and Hypoxylon, twenty-one from Glomerella and its anamorph Colletotrichum (42.3% of total isolated strains) and ten from Hypoxylon (19.2% of total isolated strains). Pleurostoma, Chaetomium, Coniochaeta (Lecythophora), Daldinia, Xylaria, Hypoxylon, Nodulisporium, Cazia and Phellinus were reported as endophytic fungi isolated from H. serrata for the first time.  相似文献   

16.
The stereochemical inversion of (R)-5-hydroxymethyl-3-tert-butyl-2-oxazolidinone (la) or (R)-5-hydroxymethyl-3-isopropyl-2-oxazolidinone (lb) to the corresponding (S)-isomer was accomplished via a key intermediate, (R)-3-N-ethoxycarbonyl-N-tert-butylamino-l,2-epoxypropane (5a) or (R)-3-N-ethoxycarbonyl-N-isopropylamino-l,2-epoxypropane (5b), in a high enantiomeric excess. (S)-la (99%e.e.) or (S)-lb (91%e.e.) was thus obtained from the respective (R)-isomer (la; 99%e.e., lb; 95%e.e.).  相似文献   

17.
Fourteen species of aphids (Hemiptera: Aphidoidea) are recorded as new to Saudi Arabia. These are: Aphis coreopsidis (Thomas, 1878); Aphis illinoisensis Shimer, 1866; Baizongia pistaceae (Linnaeus, 1767); Capitophorus elaeagni (del Guercio, 1894); Dysaphis plantaginea (Passerini, 1860); Eucarazzia elegans (Ferrari, 1872); Geoica lucifuga (Zehntner, 1897); Hayhurstia atriplicis (Linnaeus, 1761); Macrosiphoniella absinthii (Linnaeus, 1758); Macrosiphoniella sanborni (Gillette, 1908); Smynthurodes betae Westwood, 1849; Uroleucon cichorii (Koch, 1855), and Wahlgreniella nervata (Gillette, 1908). Among these, three species, i.e. A. coreopsidis, A. illinoisensis, and W. nervata are alien species.  相似文献   

18.
Synthetic studies of annonaceous acetogenins starting from (?)-muricatacin (1a) or (+)-muricatacin are described, involving (?)-muricatacin (1a), mono-THF acetogenin, solamin (2), reticulatacin (3), (15R, 16R, 19S, 20S)-cis-solamin (4a) and (15S, 16S, 19R, 20R)-cis-solamin (4b), non-adjacent bis-THF acetogenin, 4-deoxygigantecin (5), and epoxide-bearing acetogenin, (15S, 16R, 19S, 20R)-diepomuricanin (6a).  相似文献   

19.
The Korean shoot fly genus Atherigona Rondani is reviewed taxonomically. A total of five species was identified: A. (Acritochaeta) orientalis Schiner, A. (Atherigona) biseta Karl, A. (Atherigona) falcata (Thomson), A. (Atherigona) oryzae Malloch, and A. (Atherigona) bifurca sp. nov. Of these, A. (Atherigona) bifurca sp. nov. is new to science, and A. (Atherigona) biseta Karl and A. (Atherigona) falcata (Thomson) are reported for the first time in Korea. A key to Korean species and photographs of external features are provided.  相似文献   

20.
In the southern part of Cyprus the pollinator —Ophrys (Orchidaceae) relationships and its specifity have been investigated from the end of February until the middle of March 1986. 12Ophrys spp. were found. To date, only a single pollinator reference has been reported from this island. We found the following pollinators:Melecta tuberculata (Ophrys kotschyi),Eucera dimidiata (Ophrys flavomarginata),Eucera gaullei (Ophrys umbilicata),Eucera paulusi (Ophrys bornmuelleri),Anthophora erschowi (Ophrys elegans),Andrena torda (Ophrys sicula =O. lutea subsp.minor),Andrena cinereophila (Ophrys fusca, small-flowered),Andrena flavipes (Ophrys israelitica),Andrena morio (Ophrys iricolor andOphrys transhyrcana),Andrena bimaculata (Ophrys sphegodes aggr., probably formerly confused withO. transhyrcana). Most interestingly, it could be verified thatO. flavomarginata/O. umbilicata, O. bornmuelleri/O. levantina andO. transhyrcana/O. sphegodes aggr. (possiblyO. sintenisii) are different biospecies. This is a result of genetic isolation due to varying pollinators, and of differences in flower morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号