首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Garcinia cambogia-derived (-)-hydroxycitric acid (HCA) is a popular and natural supplement for weight management. HCA is a competitive inhibitor of the enzyme ATP citrate lyase, which catalyzes the conversion of citrate and coenzyme A to oxaloacetate and acetyl coenzyme A (acetyl CoA) in the cytosol. Acetyl CoA is used in the synthesis of fatty acids, cholesterol and triglycerides, and in the synthesis of acetylcholine in the central nervous system. Studies have demonstrated the efficacy of a novel 60% calcium-potassium salt of HCA derived from Garcinia cambogia (HCA-SX, Super CitriMax) in weight management. Results have shown that HCA-SX promotes fat oxidation, enhances serotonin release and availability in the brain cortex, normalizes lipid profiles, and lowers serum leptin levels in obese subjects. Acute oral, acute dermal, primary dermal irritation and primary eye irritation toxicity, as well as Ames bacterial reverse mutation studies and mouse lymphoma tests have demonstrated the safety of HCA-SX. However, no detailed long-term safety of HCA-SX or any other HCA extract has been previously assessed. We evaluated the dose- and time-dependent effects of HCA-SX in Sprague-Dawley rats on body weight, selected organ weights, hepatic lipid peroxidation and DNA fragmentation, hematology and clinical chemistry over a period of 90 days. Furthermore, a 90-day histopathological evaluation was conducted. The animals were treated with 0, 0.2, 2.0 and 5.0% HCA-SX of feed intake and were sacrificed on 30, 60 or 90 days of treatment. The body weight and selected organ weights were assessed and correlated as a % of body weight and brain weight at 90 days of treatment. A significant reduction in body weight was observed in treated rats as compared to control animals. An advancing age-induced marginal increase in hepatic lipid peroxidation was observed in both male and female rats, while no such difference in hepatic DNA fragmentation was observed as compared to the control animals. Furthermore, selected organ weights individually and as a % of body weight and brain weight at 90 days of treatment exhibited no significant difference between the groups. No difference was observed in hematology and clinical chemistry or the histopathological evaluation. Taken together, these results show that 90 day treatment of HCA-SX results in a reduction in body weight, and does not cause any changes in major organs or in hematology, clinical chemistry, and histopathology.  相似文献   

2.
(–)-Hydroxycitric acid (HCA), a natural extract from the dried fruit rind of Garcinia cambogia (family Guttiferae), is a popular supplement for weight management. The dried fruit rind has been used for centuries as a condiment in Southeastern Asia to make food more filling and satisfying. A significant number of studies highlight the efficacy of Super CitriMax (HCA-SX, a novel 60% calcium-potassium salt of HCA derived from Garcinia cambogia) in weight management. These studies also demonstrate that HCA-SX promotes fat oxidation, inhibits ATP-citrate lyase (a building block for fat synthesis), and lowers the level of leptin in obese subjects. Acute oral, acute dermal, primary dermal irritation and primary eye irritation toxicity studies have demonstrated the safety of HCA-SX. However, no long-term safety of HCA-SX or any other (–)-hydroxycitric acid extract has been previously assessed. In this study, we have evaluated the dose- and time-dependent effects of HCA-SX in Sprague-Dawley rats on body weight, hepatic and testicular lipid peroxidation, DNA fragmentation, liver and testis weight, expressed as such and as a % of body weight and brain weight, and histopathological changes over a period of 90 days. The animals were treated with 0, 0.2, 2.0 and 5.0% HCA-SX as feed intake and the animals were sacrificed on 30, 60 or 90 days of treatment. The feed and water intake were assessed and correlated with the reduction in body weight. HCA-SX supplementation demonstrated a reduction in body weight in both male and female rats over a period of 90 days as compared to the corresponding control animals. An advancing age-induced marginal increase in hepatic lipid peroxidation was observed in both male and female rats as compared to the corresponding control animals. However, no such difference in hepatic DNA fragmentation and testicular lipid peroxidation and DNA fragmentation was observed. Furthermore, liver and testis weight, expressed as such and as a percentage of body weight and brain weight, at 30, 60 and 90 days of treatment, exhibited no significant difference between the four groups. Taken together, these results indicate that treatment of HCA-SX over a period of 90 days results in a reduction in body weight, but did not cause any changes in hepatic and testicular lipid peroxidation, DNA fragmentation, or histopathological changes.  相似文献   

3.
Garcinia cambogia-derived (—)-hydroxycitric acid (HCA) is a popular and natural supplement for weight management. HCA is a competitive inhibitor of the enzyme ATP citrate lyase, which catalyzes the conversion of citrate and coenzyme A to oxaloacetate and acetyl coenzyme A (acetyl CoA) in the cytosol. Acetyl CoA is used in the synthesis of fatty acids, cholesterol and triglycerides, and in the synthesis of acetylcholine in the central nervous system. Studies have demonstrated the efficacy of a novel 60% calcium-potassium salt of HCA derived from Garcinia cambogia(HCA-SX, Super CitriMax) in weight management. Results have shown that HCA-SX promotes fat oxidation, enhances serotonin release and availability in the brain cortex, normalizes lipid profiles, and lowers serum leptin levels in obese subjects. Acute oral, acute dermal, primary dermal irritation and primary eye irritation toxicity, as well as Ames bacterial reverse mutation studies and mouse lymphoma tests have demonstrated the safety of HCA-SX. However, no detailed long-term safety of HCA-SX or any other HCA extract has been previously assessed. We evaluated the dose- and time-dependent effects of HCA-SX in Sprague-Dawley rats on body weight, selected organ weights, hepatic lipid peroxidation and DNA fragmentation, hematology and clinical chemistry over a period of 90 days. Furthermore, a 90-day histopathological evaluation was conducted. The animals were treated with 0, 0.2, 2.0 and 5.0% HCA-SX of feed intake and were sacrificed on 30, 60 or 90 days of treatment. The body weight and selected organ weights were assessed and correlated as a % of body weight and brain weight at 90 days of treatment. A significant reduction in body weight was observed in treated rats as compared to control animals. An advancing age-induced marginal increase in hepatic lipid peroxidation was observed in both male and female rats, while no such difference in hepatic DNA fragmentation was observed as compared to the control animals. Furthermore, selected organ weights individually and as a % of body weight and brain weight at 90 days of treatment exhibited no significant difference between the groups. No difference was observed in hematology and clinical chemistry or the histopathological evaluation. Taken together, these results show that 90 day treatment of HCA-SX results in a reduction in body weight, and does not cause any changes in major organs or in hematology, clinical chemistry, and histopathology.  相似文献   

4.
Obesity is associated with cardiovascular disease, diabetes and certain forms of cancer. Popular strategies on weight loss often fail to address many key factors such as fat mass, muscle density, bone density, water mass, their inter-relationships and impact on energy production, body composition, and overall health and well-being. (−)-Hydroxycitric acid (HCA), a natural plant extract from the dried fruit rind of Garcinia cambogia, has been reported to promote body fat loss in humans without stimulating the central nervous system. The level of effectiveness of G. cambogia extract is typically attributed solely to HCA. However, other components by their presence or absence may significantly contribute to its therapeutic effectiveness. Typically, HCA used in dietary weight loss supplement is bound to calcium, which results in a poorly soluble (<50%) and less bioavailable form. Conversely, the structural characteristics of a novel Ca2+/K+ bound (−)-HCA salt (HCA-SX or Super CitriMax) make it completely water soluble as well as bioavailable. An efficacious dosage of HCA-SX (4500 mg/day t.i.d.) provides a good source of Ca2+ (495 mg, 49.5% of RDI) and K+ (720 mg, 15% of RDI). Ca2+ ions are involved in weight management by increasing lipid metabolism, enhancing thermogenesis, and increasing bone density. K+, on the other hand, increases energy, reduces hypertension, increases muscle strength and regulates arrhythmias. Both Ca and K act as buffers in pH homeostasis. HCA-SX has been shown to increase serotonin availability, reduce appetite, increase fat oxidation, improve blood lipid levels, reduce body weight, and modulate a number of obesity regulatory genes without affecting the mitochondrial and nuclear proteins required for normal biochemical and physiological functions.  相似文献   

5.
Obesity is an increasing problem, with a growing number of people worldwide classed as overweight and at high risk for developing other serious conditions, such as coronary heart disease and diabetes. The expansion of the size and number of adipocytes is the key characteristic of obesity. Rimonabant, a novel anti-obesity drug, not only exhibits its central effects such as reducing food intake but also influences lipid metabolism in adipocytes through blocking endocannabinoid system. The endocannabinoid system has multiple biological effects, and it has become new target of cardiometabolic risk control. Recently, the connection of adiopocytes and atherosclerosis has been extensively explored. It is believed that adipocytes play critical roles in the development of atherosclerosis. Adipocyte is itself recognized as an important site of production of inflammation-related proteins (adipokines), which is influenced by energy and lipid metabolism in adipocytes. The endocannabinoid system may regulate lipogenesis and adipokines' production in adipocytes. We hypothesize that adipocytes will be a link between endocannabinoid system and atherosclerosis. Exploring the effect and mechanism of endocannabinoid system on adipocyte is thus likely to be very helpful for further understanding the critical role that adipocytes plays in the development and progress of obesity and atherosclerosis, and may provide potential therapeutic options for obesity and atherosclerosis.  相似文献   

6.
A growing body of evidence demonstrates the efficacy of Garcinia cambogia-derived natural (–)-hydroxycitric acid (HCA) in weight management by curbing appetite and inhibiting body fat biosynthesis. However, the exact mechanism of action of this novel phytopharmaceutical has yet to be fully understood. In a previous study, we showed that in the rat brain cortex a novel HCA extract (HCA-SX, Super CitriMax) increases the release/availability of radiolabeled 5-hydroxytryptamine or serotonin ([3H]-5-HT), a neurotransmitter implicated in the regulation of eating behavior and appetite control. The aim of the present study was 2-fold: (a) to determine the effect of HCA-SX on 5-HT uptake in rat brain cortex in vitro; and (b) to evaluate the safety of HCA-SX in vivo. Isolated rat brain cortex slices were incubated in oxygenated Krebs solution for 20 min and transferred to buffer solutions containing [3H]-5-HT for different time intervals. In some experiments, tissues were exposed to HCA-SX (10 M – 1 mM) and the serotonin receptor reuptake inhibitors (SRRI) fluoxetine (100 M) plus clomipramine (10 M). Uptake of [3H]-5-HT was expressed as d.p.m./mg wet weight. A time-dependent uptake of [3H]-5-HT occurred in cortical slices reaching a maximum at 60 min. HCA-SX, and fluoxetine plus clomipramine inhibited the time-dependent uptake of [3H]-5-HT. At 90 min, HCA-SX (300 M) caused a 20% decrease, whereas fluoxetine plus clomipramine inhibited [3H]-5-HT uptake by 30%. In safety studies, acute oral toxicity, acute dermal toxicity, primary dermal irritation and primary eye irritation, were conducted in animals using various doses of HCA-SX. Results indicate that the LD50 of HCA-SX is greater than 5000 mg/kg when administered once orally via gastric intubation to fasted male and female Albino rats. No gross toxicological findings were observed under the experimental conditions. Taken together, these in vivo toxicological studies demonstrate that HCA-SX is a safe, natural supplement under the conditions it was tested. Furthermore, HCA-SX can inhibit [3H]-5-HT uptake (and also increase 5-HT availability) in isolated rat brain cortical slices in a manner similar to that of SRRIs, and thus may prove beneficial in controlling appetite, as well as treatment of depression, insomnia, migraine headaches and other serotonin-deficient conditions.  相似文献   

7.
8.
目的:研究白藜芦醇抑制高脂引起的肥胖的作用机制。方法:将18只C57小鼠随机分为3组,分别为对照组、高脂以及高脂+白藜芦醇小鼠模型,给小鼠喂养一定剂量白藜芦醇(100 mg/kg/d),喂养12周。提取小鼠皮下脂肪细胞,分化成熟,加入白藜芦醇,采用q RT-PCR以及Western blot等方法检测HO-1以及棕色脂肪标志基因的表达。通过q RT-PCR检测小鼠脂肪组织炎症因子、UCP-1以及HO-1的表达。结果:白藜芦醇在体内可以明显抑制高脂引起的肥胖,糖耐量异常,同时促进棕色脂肪标志基因UCP-1,PGC-1以及PRDM16的表达。白藜芦醇还可抑制肥胖小鼠脂肪组织炎症因子的增加以及抗炎蛋白HO-1的表达。在体外分化的成熟的皮下脂肪细胞中,白藜芦醇同样可以促进棕色脂肪标志基因UCP-1,PGC-1以及PRDM16的表达。白藜芦醇通过促进抗炎蛋白HO-1的表达抑制高脂引起的脂肪炎症反应。结论:白藜芦醇可以通过促进白色脂肪棕色化以及抑制慢性低度炎症抑制高脂引起的肥胖、糖耐量异常以及改善胰岛素敏感性。  相似文献   

9.
Objective: Recently, an activation of the endocannabinoid system during obesity has been reported. More particularly, it has been demonstrated that hypothalamic levels of both endocannabinoids, 2‐arachidonoylglycerol and anandamide (N‐arachidonoylethanolamine), are up‐regulated in genetically obese rodents. Circulating levels of both endocannabinoids were also shown to be higher in obese compared with lean women. Yet, the direct production of endocannabinoids by human adipocytes has never been demonstrated. Our aim was to evaluate the ability of human adipocytes to produce endocannabinoids. Research Methods and Procedures: The production of endocannabinoids by human adipocytes was investigated in a model of human white subcutaneous adipocytes in primary culture. The effects of leptin, adiponectin, and peroxisome proliferator‐activated receptor (PPAR)‐γ activation on endocannabinoid production by adipocytes were explored. Endocannabinoid levels were determined by high‐performance liquid chromatography (HPLC)‐atmospheric pressure chemical ionization (APCI)‐mass spectrometry (MS) analysis, leptin and adiponectin secretion measured by enzyme‐linked immunosorbent assay (ELISA), and PPAR‐γ protein expression examined by Western blotting. Results: We show that 2‐arachidonoylglycerol, anandamide, and both anandamide analogs, N‐palmitoylethanolamine and N‐oleylethanolamine, are produced by human white subcutaneous adipocytes in concentrations ranging from 0.042 ± 0.004 to 0.531 ± 0.048 pM/mg lipid extract. N‐palmitoylethanolamine is the most abundant cannabimimetic compound produced by human adipocytes, and its levels are significantly down‐regulated by leptin but not affected by adiponectin and PPAR‐γ agonist ciglitazone. N‐palmitoylethanolamine itself does not affect either leptin or adiponectin secretion or PPAR‐γ protein expression in adipocytes. Discussion: This study has led to the identification of human adipocytes as a new source of endocannabinoids and related compounds. The biological significance of these adipocyte cannabimimetic compounds and their potential implication in obesity should deserve further investigations.  相似文献   

10.
Apolipoprotein A5 (apoA5) has an important role in lipid metabolism, specifically for triglyceride‐rich lipoproteins. Recently, evidence has emerged for an association between genetic variability at the APOA5 locus and increased risk of obesity and metabolic syndrome. However, its mechanism of action remains to be fully elucidated. Importantly, an intracellular role of apoA5 has been indicated since apoA5 is associated with cytoplasmic lipid droplets and affects intrahepatic triglyceride accumulation, as well as affecting intravascular triglyceride metabolism. Given that adipocytes provide the largest storage depot for energy in the form of triglyceride within the lipid droplets, and play a crucial role in the development of obesity, we highlight recent findings discussing the interaction of apoA5 with adipocytes or adipose tissue, indicating that apoA5 may act as a novel regulator to modulate triglyceride storage in adipocytes. We review the association of APOA5 gene polymorphisms with obesity and metabolic syndrome, and propose potential mechanisms by which apoA5 may increase susceptibility to these conditions. This review provides new insights into the physiological role of apoA5 and identifies a potential therapeutic target for obesity and associated disorders.  相似文献   

11.
Macrophage infiltration into adipose tissue (AT‐MP) is thought to induce insulin resistance and diabetes in obesity. Here, we investigated the effect of the antiobesity drug SR141716 (a CB1 antagonist) on macrophage‐mediated inhibition of insulin signaling in adipocytes. THP1 macrophages (THP1) were stimulated in vitro with lipopolysaccharide (LPS) and SR141716 or vehicle. The resulting conditioned medium (CM) was analyzed and incubated on human adipocytes. CM from LPS‐stimulated THP1 inhibited insulin‐induced AKT phosphorylation in adipocytes, in contrast to CM from nonactivated THP1. Moreover, it contained higher concentrations of tumor necrosis factor‐α (TNFα) and lower levels of the anti‐inflammatory cytokine IL‐10. SR141716 reduced TNFα production and increased IL‐10 secretion, resulting in a rescue of insulin signaling in adipocytes. To confirm these findings in vivo, AT‐MP CM from cafeteria diet‐fed or Zucker diabetic fatty (ZDF) rats that had received SR141716 for 3 weeks were isolated, analyzed, and incubated with adipocytes. Cafeteria diet induced macrophage‐mediated inhibition of insulin signaling in adipocytes. Interestingly, SR141716 rescued insulin‐induced glucose uptake in adipocytes. Finally, AT‐MP CM from obese ZDF rats inhibited insulin‐stimulated glucose uptake in adipocytes in contrast to AT‐MP CM from lean ZDF rats. After treatment with SR141716, AT‐MP CM rescued insulin‐induced glucose uptake in adipocytes. In summary, our data indicate that CB1 receptor antagonism in macrophages modified their cytokine production and improved the insulin responsiveness of adipocytes that had been incubated with macrophage CM. Thus, SR141716 ameliorated adipose tissue insulin resistance by direct action on AT‐MP demonstrating a novel peripheral mode of action of CB1 antagonism.  相似文献   

12.
《Free radical research》2013,47(11):1386-1396
Abstract

Endoplasmic reticulum (ER) stress is an emerging potential therapeutic target for metabolic syndrome due to its role in synthesis, secretion, and folding of proteins. It leads to an increased production of reactive oxygen species (ROS) which, along with mitochondrial dysfunction and reduced antioxidant defense, causes chronic cell injury. The present investigation aims to observe the alterations in adipocytes due to ER stress and the protective effect of hydroxycitric acid (HCA), a bioactive from Garcinia species, to develop the same as a nutraceutical. ER stress was induced in mature 3T3-L1 adipocytes by treating them with tunicamycin (2μg/ml) for 18 h. Alterations in cell viability, innate antioxidant system (superoxide dismutase, glutathione peroxidase, and glutathione reductase), mitochondria (membrane potential, biogenesis, and transition pore opening), and inflammatory cytokines (tumor necrosis factor, monocyte chemoattractant protein, interferon-γ, interleukin (IL)-10, IL-6, and IL-1β) during ER stress, and co-treatment with HCA were analyzed. Endocrine function of adipocytes was also assessed by measuring adiponectin and leptin secretion levels. HCA protected the cells from ER stress by improving the antioxidant status and mitochondrial functions. The results validate nutraceutical properties of the edible bioactive, commonly used for culinary purpose. A more detailed study on the mechanism of action of HCA is required for developing it as a therapeutic agent for metabolic syndrome.  相似文献   

13.

Objective:

Obesity is associated with chronic inflammation. Toll‐like receptors (TLR) and NOD‐like receptors (NLR) are two families of pattern recognition receptors that play important roles in immune response and inflammation in adipocytes. It has been reported that TLR4 and TLR2 activation induce proinflammatory changes that impair adipocyte differentiation. However, the effects of activation of NOD1 and NOD2, the two prominent members of NLR, on adipocyte differentiation have not been studied.

Design and Methods:

3T3‐L1 and human adipose‐derived stem cells were tested for adipocyte differentiation in the presence or absence of NOD ligand. Adipocyte differentiation was evaluated by the adipocyte markers gene expression and Oil Red O staining for lipid accumulation.

Results:

Activation of NOD1, but not NOD2, by a synthetic ligand dose‐dependently suppressed 3T3‐L1 adipocyte differentiation as revealed by Oil Red O stained cell morphology, lipid accumulation, and attenuated gene expression of adipocyte markers (PPARγ, C/EBPα, SCD, FABP4, Adiponectin). Activation of NOD1, but not NOD2, induced NF‐κB activation, which correlated with their abilities to suppress ligand‐induced PPARγ transaction. Moreover, the suppressive effect by NOD1 activation was reversed by IκB super‐repressor which blocks NF‐κB activation. The suppression by NOD1 ligand C12‐iEDAP on adipocyte differentiation was reversed by small RNA interference targeting NOD1, demonstrating the specificity of NOD1 activation. In contrast, activation of NOD1 and NOD2 both significantly suppressed adipocyte differentiation of human adipose‐derived adult stem cells, demonstrating the species specific effects of NOD activation. In contrast to enhanced leptin mRNA by LPS and TNFα, NOD1 activation suppressed leptin mRNA in adipocytes, suggesting the differential effects of NOD1 activation in adipocytes.

Conclusions:

Overall, our results suggest that NOD1 represents a novel target for adipose inflammation in obesity.  相似文献   

14.
We have studied the effect of several doses of GLP-1, compared to that of insulin and glucagons, on lipogenesis, lipolysis and cAMP cellular content, in human adipocytes isolated from normal subjects. In human adipocytes, GLP-1 exerts a dual action, depending upon the dose, on lipid metabolism, being lipogenic at low concentrations of the peptide (ED50, 10(-12) M), and lipolytic only at doses 10-100 times higher (ED50, 10(-10) M); both effects are time- and GLP-1 concentration-dependent. The GLP-1 lipogenic effect is equal in magnitude to that of equimolar amounts of insulin; both hormones apparently act synergically, and their respective action is abolished by glucagon. The lipolytic effect of GLP-1 is comparable to that of glucagon, apparently additive to it, and the stimulated value induced by either one is neutralized by the presence of insulin. In the absence of IBMX, GLP-1, at 10(-13) and 10(-12) M, only lipogenic doses, does not modify the cellular content of cAMP, while from 10(-11) M to 10(-9) M, also lipolytic concentrations, it has an increasing effect; in the presence of IBMX, GLP-1 at already 10(-12) M increased the cellular cAMP content. In human adipocytes, GLP-1 shows glucagon- and also insulin-like effects on lipid metabolism, suggesting the possibility of GLP-1 activating two distinct receptors, one of them similar or equal to the pancreatic one, accounting cAMP as a second messenger only for the lipolytic action of the peptide.  相似文献   

15.
The weight loss observed in consumers of extracts of Citrus aurantium (bitter orange) has been tentatively attributed to the lipolytic and thermogenic effects of the alkaloids abundant in the unripe fruit. Synephrine, octopamine, tyramine, and other alkaloids have been repeatedly identified and quantified in Citrus members of the Rutaceae family or in their extracts incorporated in dietary supplements for weight management. However, there are only scarce reports on their lipolytic action. This study aimed at comparing the acute lipolytic activity of synephrine, octopamine, tyramine, and N-methyltyramine in rat and human adipocytes. Maximal response to the prototypical β-adrenergic agonist isoprenaline was taken as reference in both species. In rat, octopamine was slightly more active than synephrine while tyramine and N-methyl tyramine did not stimulate—and even inhibited—lipolysis. In human adipocytes, none of these amines stimulated lipolysis when tested up to 10 μg/ml. At higher doses (≥100 μg/ml), tyramine and N-methyl tyramine induced only 20% of the maximal lipolysis and exhibited antilipolytic properties. Synephrine and octopamine were partially stimulatory at high doses. Since synephrine is more abundant than octopamine in C. aurantium, it should be the main responsible for the putative lipolytic action of the extracts claimed to mitigate obesity. Noteworthy, their common isopropyl derivative, isopropylnorsynephrine (also named isopropyloctopamine or betaphrine), was clearly lipolytic: active at 1 μg/ml and reproducing more than 60% of isoprenaline maximal effect in human adipocytes. This compound, not detected in C. aurantium, and which has few reported adverse effects to date, might be useful for in vivo triglyceride breakdown.  相似文献   

16.
Chemerin is a novel adipokine associated with obesity and insulin resistance. α-Lipoic acid (α-LA) has shown beneficial properties on diabetes and obesity. The aim of this study was to examine the effects of α-LA on chemerin production in adipocytes in absence or presence of TNF-α, insulin and AICAR. The potential signaling pathways involved in α-LA effects on chemerin were also analyzed. α-LA actions on chemerin were tested in differentiated 3T3-L1 adipocytes and in some cases in human subcutaneous and omental adipocytes. Chemerin mRNA levels were measured by RT-PCR and the amount of chemerin secreted to culture media was determined by ELISA. α-LA induced a concentration-dependent inhibition on both chemerin secretion and mRNA levels in 3T3-L1 adipocytes. The AMPK activator AICAR and the PI3K inhibitor LY294002 dramatically abrogated both chemerin secretion and gene expression, and further potentiated the inhibitory effect of α-LA on chemerin secretion. Insulin was able to partially reverse the inhibitory action of α-LA on chemerin secretion. α-LA also reduced basal chemerin secretion in both subcutaneous and omental adipocytes from overweight/obese subjects. Moreover, α-LA was able to abolish the stimulatory effects of the pro-inflammatory cytokine TNF-α on chemerin secretion. Our data demonstrated the ability of α-LA to inhibit chemerin production, an adipokine associated to obesity and metabolic syndrome, suggesting that the reduction of chemerin could contribute to the antiobesity/antidiabetic properties described for α-LA.  相似文献   

17.
Adipose tissue mass in mammals is expanding by increasing the average cell volume as well as the total number of the adipocytes. Up-regulation of lipid storage in fully differentiated adipocytes resulting in their enlargement is well documented and thought to be a critical mechanism for the expansion of adipose tissue depots during the growth of both lean and obese animals and human beings. A novel molecular mechanism for the regulation of lipid storage and cell size in rat adipocytes has recently been elucidated for the physiological stimuli, palmitate and hydrogen peroxide, the anti-diabetic sulfonylurea drug, glimepiride, and insulin-mimetic phosphoinositolglycans. It encompasses (i) the release of small vesicles, so-called adiposomes, harbouring the glycosylphosphatidylinositol-anchored (c)AMP-degrading phosphodiesterase Gce1 and 5'-nuceotidase CD73 from large donor adipocytes, (ii) the transfer of the adiposomes and their interaction with detergent-insoluble glycolipid-enriched microdomains of the plasma membrane of small acceptor adipocytes, (iii) the translocation of Gce1 and CD73 from the adiposomes to the intracellular lipid droplets of the acceptor adipocytes and (iv) the degradation of (c)AMP at the lipid droplet surface zone by Gce1 and CD73 in the acceptor adipocytes. In concert, this sequence of events leads to up-regulation of esterification of fatty acids into triacylglycerol and down-regulation of their release from triacylglycerol. This apparent mechanism for shifting the triacylglycerol burden from large to small adipocytes may provide novel strategies for the therapy of metabolic diseases, such as type 2 diabetes and obesity.  相似文献   

18.
Circulating concentrations of fatty acids are elevated in obesity, although their effect on regional fat deposition is relatively unexplored. With the increasing prevalence of childhood obesity, we aimed to investigate whether saturated and unsaturated fatty acids lead to differential lipid accumulation (LA) in children's subcutaneous and visceral adipocytes. To examine this, subcutaneous and peri-nephric pre-adipocytes, isolated from fat biopsies from 6 pre-pubertal children, were differentiated in vitro before being exposed to palmitate and/or oleate for 24 h. Lipid accumulation was then quantified by nile red staining. Palmitate significantly increased LA in visceral adipocytes at all doses > or =188 microM (e.g. Palmitate 750 microM: +30.0%[8.2]; p<0.01), whilst only a dose of 375 microM led to a significant, but smaller, increase in LA in subcutaneous adipocytes (Palmitate 375 micro: +13.0%[4.3]; p=0.02). In contrast, oleate significantly increased LA in subcutaneous (Oleate 1000 microM: +36.3%[14.0]; p=0.01), but not visceral (Oleate 1000 microM: +16.2%[9.6]; p=0.25) adipocytes. These data suggest that saturated and unsaturated fatty acids may exert depot-specific effects on lipid accumulation.  相似文献   

19.
20.
Anti-obese action of raspberry ketone   总被引:3,自引:0,他引:3  
Raspberry ketone (4-(4-hydroxyphenyl) butan-2-one; RK) is a major aromatic compound of red raspberry (Rubus idaeus). The structure of RK is similar to the structures of capsaicin and synephrine, compounds known to exert anti-obese actions and alter the lipid metabolism. The present study was performed to clarify whether RK helps prevent obesity and activate lipid metabolism in rodents. To test the effect on obesity, our group designed the following in vivo experiments: 1) mice were fed a high-fat diet including 0.5, 1, or 2% of RK for 10 weeks; 2) mice were given a high-fat diet for 6 weeks and subsequently fed the same high-fat diet containing 1% RK for the next 5 weeks. RK prevented the high-fat-diet-induced elevations in body weight and the weights of the liver and visceral adipose tissues (epididymal, retroperitoneal, and mesenteric). RK also decreased these weights and hepatic triacylglycerol content after they had been increased by a high-fat diet. RK significantly increased norepinephrine-induced lipolysis associated with the translocation of hormone-sensitive lipase from the cytosol to lipid droplets in rat epididymal fat cells. In conclusion, RK prevents and improves obesity and fatty liver. These effects appear to stem from the action of RK in altering the lipid metabolism, or more specifically, in increasing norepinephrine-induced lipolysis in white adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号