共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sigrun D. Feldmann Hermann Sahm Georg A. Sprenger 《Molecular & general genetics : MGG》1992,234(2):201-210
Summary The genes xy1A and xy1B were cloned together with their promoter region from the chromosome of Klehsiella pneumoniae var. aerogenes 1033 and the DNA sequence (3225 bp) was determined. The gene xy1A encodes the enzyme xylose isomerase (XI or XylA) consisting of 440 amino acids (calculated Mr of 49 793). The gene xy1B encodes the enzyme xylulokinase (XK or Xy1B) with a calculated M, of 51 783 (483 amino acids). The two genes successfully complemented xy1 mutants of Escherichia coli K12, but no gene dosage effect was detected. E. coli wild-type cells which harbored plasmids with the intact xylA
Kp 5 upstream region in high copy number (but lacking an active xy1B gene on the plasmids) were phenotypically xylose-negative and xylose isomerase and xylulokinase activities were drastically diminished. Deletion of 5 upstream regions of xy1A on these plasmids and their substitution by a lac promoter resulted in a xylose-positive phenotype. This also resulted in overproduction of plasmid-encoded xylose isomerase and xylulokinase activities in recombinant E. coli cells. 相似文献
3.
4.
Susan Angell Cinzia G. Lewis Mark J. Buttner Mervyn J. Bibb 《Molecular & general genetics : MGG》1994,244(2):135-143
The glucose kinase gene (glkA-ORF3) of Streptomyces coelicolor A3(2) plays an essential role in glucose utilisation and in glucose repression of a variety of genes involved in the utilisation of alternative carbon sources. These genes include dagA, which encodes an extracellular agarase that permits agar utilisation. Suppressor mutants of glkA-ORF3 deletion strains capable of utilising glucose (Glc+) arise at a frequency of about 10–5 on prolonged incubation. The Glc+ phenotype of the mutants is reversible (at a frequency of about 10–3) and reflects either the activation of a normally silent glucose kinase gene or the modification of an existing sugar kinase. Although the level of glucose kinase activity in the Glc+ supressor mutants is similar to that in the glkA
+ parental strain, glucose repression of dagA remains defective. Expression of the glucose kinase gene of Zymomonas mobilis in glkA-ORF3 mutants restored glucose utilisation, but not glucose repression of dagA. Over-expression of glkA-ORF3 on a high-copy-number plasmid failed to restore glucose repression of dagA in glkA-ORF3 mutants and led to loss of glucose repression of dagA in a glkA
+ strain. These results suggest that glucose phosphorylation itself is not sufficient for glucose repression and that glkA-ORF3 plays a specific regulatory role in triggering glucose repression in S. coelicolor A3(2). 相似文献
5.
Summary The Streptomyces albus G genes (salR and salM) for the class II restriction enzyme SalI (SalGI) and its cognate modification enzyme were cloned in Streptomyces lividans 66. Selection was initially for the salR gene. From a library of S. albus G DNA in the high copy number plasmid pIJ486 several clones of S. lividans were obtained that were resistant to phage C31 unmodified at the many SalI sites in its DNA, but were sensitive to modified phages last propagated on a restriction-deficient, modification-proficient mutant of S. albus G. SalI activity was detected in cell-free extracts of the clones, though only at levels comparable with that in S. albus G. Five different recombinant plasmids were isolated, with inserts of 5.6, 5.7, 8.9, 10 and 18.9 kb that contained a common region of 4.5 kb. These plasmids could not be digested by SalI, although the vector has four recognition sites for this enzyme, indicating that the salM gene was also cloned and expressed. Subcloning experiments in S. lividans indicated the approximate location of salR and salM, and in Escherichia coli led to detectable expression of salM but not of salR. A variety of previously isolated S. albus G mutants affected in aspects of SalI-specific restriction and modification were complemented by the cloned DNA; they included a mutant temperature-sensitive for growth apparently because of a mutation in salM. Southern blotting showed that DNA homologous to the cloned sal genes was present in Xanthomonas and Rhodococcus strains, but not detectably in Herpetosiphon strains, all of which produce SalI isoschizomers. 相似文献
6.
Anjali Madhavan Sriappareddy Tamalampudi Kazunari Ushida Daisuke Kanai Satoshi Katahira Aradhana Srivastava Hideki Fukuda Virendra S. Bisaria Akihiko Kondo 《Applied microbiology and biotechnology》2009,82(6):1067-1078
The cDNA sequence of the gene for xylose isomerase from the rumen fungus Orpinomyces was elucidated by rapid amplification of cDNA ends. The 1,314-nucleotide gene was cloned and expressed constitutively in
Saccharomyces cerevisiae. The deduced polypeptide sequence encoded a protein of 437 amino acids which showed the highest similarity to the family
II xylose isomerases. Further, characterization revealed that the recombinant enzyme was a homodimer with a subunit of molecular
mass 49 kDa. Cell extract of the recombinant strain exhibited high specific xylose isomerase activity. The pH optimum of the
enzyme was 7.5, while the low temperature optimum at 37°C was the property that differed significantly from the majority of
the reported thermophilic xylose isomerases. In addition to the xylose isomerase gene, the overexpression of the S. cerevisiae endogenous xylulokinase gene and the Pichia stipitis SUT1 gene for sugar transporter in the recombinant yeast facilitated the efficient production of ethanol from xylose. 相似文献
7.
The Escherichia coli d-xylose isomerase (d-xylose ketol-isomerase, EC 5.3.1.5) gene, xylA, has been cloned on various E. coli plasmids. However, it has been found that high levels of overproduction of the d-xylose isomerase, the protein product of the xylA gene, cannot be accomplished by cloning the intact gene on high copy-number plasmids alone. This is believed to be due to the fact that the expression of the gene through its natural promoter is highly regulated in E. coli. In order to overcome this, the xylA structural gene has been fused with other strong promoters such as tac and lac, resulting in the construction of a number of fused genes. Analysis of the E. coli transformants containing the fused genes, cloned on high copy-number plasmids, indicated that a 20-fold overproduction of the enzyme can now be obtained. It is expected that overproduction of the enzyme in E. coli can still be substantially improved through additional manipulation with recombinant DNA techniques. 相似文献
8.
Summary The nucleotide sequence of a 1105 by Streptomyces rimosus DNA fragment containing five transfer RNA genes was determined. Two tRNAGln (CUG) genes, differing by 1 by in the aminoacyl stem, and three identical tRNAGlu (CUC) genes were identified. The five tRNA genes, arranged in the order: Gln1-Glul-Glu2-Gln2-Glu3, were separated by short, nonhomologous intergenic regions. Surprisingly, none of these tRNA genes encoded the CCA 3 terminus of mature tRNAs. All five encoded tRNAs for the translation of GC rich codons, which are preferentially used in Streptomyces genes (CAG and GAG, respectively). We recently reported nucleotide sequences of two initiator tRNA genes from S. rimosus, which also do not encode the CCA end of mature tRNAs. It is therefore very likely that S. rimosus represents an example of those eubacteria in which the majority of tRNA genes do not encode the 3 terminal CCA end of mature tRNAs. Evolutionary implications of this finding remain to be elucidated. 相似文献
9.
Frédéric Boccard Jean-Luc Pernodet Annick Friedmann Michel Guérineau 《Molecular & general genetics : MGG》1988,212(3):432-439
Summary
Streptomyces ambofaciens strain ATCC23877 contains the 11.1 kb plasmid pSAM2 stably integrated into its chromosome. This plasmidic sequence is able to loop out and to be transferred at high frequency to S. lividans where it is found simultaneously as both free and integrated plasmid. When a UV derivative of strain ATCC23877 (strain ATCC15154) is used, the resident copy of pSAM2 can be transferred to S. lividans, but only the integrated form is found in this strain. In both cases, the integration occurs at a unique chromosomal region through the same plasmidic integration site as that in strain ATCC23877. The resident copy of strain ATCC15154 can also be transferred at low frequency to S. ambofaciens DSM40697 (devoid of any pSAM2 sequence). In this case, as several copies of pSAM2 are integrated, the integration pattern is complicated. Integration of a complete pSAM2 sequence in this strain occurs in a region that hybridizes with the integration zones of S. lividans and of S. ambofaciens strain ATCC23877. Comparison of the cloned integration zone of S. lividans before and after the integration event showed that the restriction pattern of the resident pSAM2 in strain ATCC15154 is similar to that of the free form of pSAM2 found naturally in another UV derivative of strain ATCC23877 (strain JI3212). 相似文献
10.
Ana Maria Souto-Maior David Runquist Brbel Hahn-Hgerdal 《Journal of biotechnology》2009,143(2):119-123
For recombinant xylose-utilizing Saccharomyces cerevisiae, ethanol yield and productivity is substantially lower on xylose than on glucose. In contrast to glucose, xylose is a novel substrate for S. cerevisiae and it is not known how this substrate is recognized on a molecular level. Failure to activate appropriate genes during xylose-utilization has the potential to result in sub-optimal metabolism and decreased substrate uptake. Certain differences in fermentative performance between the two substrates have thus been ascribed to variations in regulatory response. In this study differences in substrate utilization of glucose and xylose was analyzed in the recombinant S. cerevisiae strain TMB3400. Continuous cultures were performed with glucose and xylose under carbon- and nitrogen-limited conditions. Whereas biomass yield and substrate uptake rate were similar during carbon-limited conditions, the metabolic profile was highly substrate dependent under nitrogen-limited conditions. While glycerol production occurred in both cases, ethanol production was only observed for glucose cultures. Addition of acetate and 2-deoxyglucose pulses to a xylose-limited culture was able to stimulate transient overflow metabolism and ethanol production. Application of glucose pulses enhanced xylose uptake rate under restricted co-substrate concentrations. Results are discussed in relation to regulation of sugar metabolism in Crabtree-positive and -negative yeast. 相似文献
11.
Summary A broad-spectrum mercury resistance locus (mer) from a spontaneous chloramphenicol-sensitive (Cms), arginine auxotrophic (Arg–) mutant of Streptomyces lividan 1326 was isolated on a 6 kb DNA fragment by shotgun cloning into the mercury-sensitive derivative S. lividans TK64 using the vector pIJ702. The mer genes form part of a very large amplifiable DNA sequence present in S. lividans 1326. This element was amplified to about 20 copies per chromosome in the Cms Arg– mutant and was missing from strains like S. lividans TK64, cured for the plasmid SLP3. DNA sequence analysis of a 5 kb region encompassing the whole region required for broad-spectrum mercury resistance revealed six open reading frames (ORFs) transcribed in opposite directions from a common intercistronic region. The protein sequences predicted from the two ORFs transcribed in one direction showed a high degree of similarity to mercuric reductase and organomercurial lyase from other gram-negative and gram-positive sources. Few, if any, similarities were found between the predicted polypeptide sequences of the other four ORFs and other known proteins. 相似文献
12.
Err-Cheng Chan Peter P. Ueng Karri L. Eder Li Fu Chen 《Journal of industrial microbiology & biotechnology》1989,4(6):409-417
Summary The xyclose isomerase gene inEscherichia coli was cloned complementarily into a Leu2-negativeSchizosaccharomyces pombe mutant (ATCC 38399). The subsequent integration of the plasmid into the chromosomal DNA of the host yeast was verified by using the dot blot and southern blot techniques. The expressed xylose isomerase showed activity on a nondenaturing polyacrylamide gel. The expression of xylose isomerase gene was influenced by the concentration of nutrients in the fermentation broth. The yeast possessed a xylose isomerase activity of 20 nmol/min/mg by growing in an enriched medium containing yeast extract-malt extract-peptone (YMP) andd-xylose. The conversion ofd-xylose tod-xylulose catalyzed by xylose isomerase in the transformed yeast cells makes it possible to fermentd-xylose with ethanol as a major product. When the fermentation broth contained YMP and 5% (w/v)d-xylose, the maximal ethanol yield and productivity reached 0.42 g/g and 0.19 g/l/h, respectively. 相似文献
13.
S. S. Deshmukh M. V. Deshpande V. Shankar 《World journal of microbiology & biotechnology》1994,10(3):264-267
A thermophilic strain of Streptomyces thermonitrificans produced a high activity of intracellular glucose isomerase (12 U/ml) when grown in a medium containing 1% (w/v) xylose, supplemented with 2% (w/v) sorbitol as the second carbon source, at 50°C for 16 h. Addition of Mg2+ enhanced enzyme production but the organism could grow and produce the enzyme in the absence of Co2+.The authors are with the Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, IndiaNCL Communication No. 5813 相似文献
14.
15.
Summary The complete nucleotide sequences were determined of hrdA, hrdC, and hrdD from Streptomyces coelicolor A3(2). They indicate the presence of a single open reading frame in each gene coding for polypeptides of 396 (43747 daltons), 339 (38173 daltons), and 332 amino acid residues (37190 daltons), respectively. These amino acid sequences revealed extensive similarities with the principal sigma factors of Bacillus subtilis, Escherichia coli, Mxyococcus xanthus, Pseudomonas aeruginosa, and also the katF gene product of E. coli. Besides the highly conserved amino acid residues in the rpoD box region, alignment of hrd gene products and the known principal sigma factors and sigma-related factors allowed us to postulate a common basic structure for the principal sigma type factors as distinct from the alternative sigma factors. 相似文献
16.
H. J. W. Wijsman B. M. van den Berg 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1982,63(3):283-287
Summary A gene termed gpiB, coding for one of the two isoenzyme zones of glucose phosphate isomerase in Petunia, has been mapped to a locus on chromosome VII by means of linkage to the marker An4, and by an allelic dosage effect on enzyme activity in trisomics. The high degree of linkage of electrophoretic alleles of gpiB to the pollen colour allele pair An4/an4, as demonstrated in the ancestral species, P. axillaris s.l. and P. integrifolia s.l., has been conserved in all cultivars of P. hybrida investigated. Another gene, coding for the enzyme leucyl-aminopeptidase could also be mapped to chromosome VII and the gene order An4 — lapB — gpiB determined. Apparently, distribution of lapB alleles is not related to the hybrid descent of P. hybrida. 相似文献
17.
Carlos Novo Tiago M. Martins Sofia Prata ngela Lopes Ana Armada 《International journal of biological macromolecules》2009,45(4):399-406
Malaria remains one of the major human parasitic diseases, particularly in subtropical regions. Most of the fatal cases are caused by Plasmodium falciparum. The rodent parasite Plasmodium chabaudi has been the model of choice in research due to its similarities to human malaria, including developmental cycle, preferential invasion of mature erythrocytes, synchrony of asexual development, antigenic variation, gene sinteny as well as similar resistance mechanisms. Protein disulfide isomerase (PDI) is an essential catalyst of the endoplasmic reticulum in different biological systems with folding and chaperone activities. Most of the proteins exported by parasites have to pass through the endoplasmic reticulum before reaching their final destination and their correct folding is critical for parasite survival. PDI constitutes a potential target for the development of alternative therapy strategies based on the inhibition of folding and chaperoning of exported proteins. We here describe the sequencing of the gene coding for the PDI from P. chabaudi and analyse the relationship to its counterpart enzymes, particularly with the PDI from other Plasmodium species. The model constructed, based on the recent model deduced from the crystallographic structure 2B5E, was compared with the previous theoretical model for the whole PDI molecule constructed by threading. A recombinant PDI from P. chabaudi was also produced and used as an antigen for monoclonal antibody production for application in PDI immunolocalization. 相似文献
18.
19.
José L. Caballero Eduardo Martinez Francisco Malpartida David A. Hopwood 《Molecular & general genetics : MGG》1991,230(3):401-412
Summary Sequence analysis of the actVA region of the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor revealed a succession of six open reading frames (ORFs), all running in the same direction and extending over 5.32 kb. The protein product of actVA-ORF1 strongly resembles that of another gene, elsewhere in the act cluster (actII-ORF2), which codes for a trans-membrane protein previously implicated in actinorhodin export from the mycelium. This suggests that the two gene products may co-operate in actinorhodin export, perhaps being sufficient for self-protection of the organism against suicide. At least four of the other five ORFs are implicated in the control of the C-6 and C-8 ring-hydroxylation reactions, lacking in actVA mutants, that occur at middle to late stages in the actinorhodin biosynthetic pathway. This conclusion was reached by genetic mapping of actVA mutants to actVA-ORF3 and-ORF5 (and perhaps -ORF4), and by the finding of strong resemblances between the protein products of actVA-ORF2 and -ORF6 and the products of genes of the oxytetracycline or tetracenomycin gene clusters that have been implicated in ring-hydroxylation reactions in the biosynthesis of these other aromatic polyketide antibiotics. 相似文献
20.
Cloning and sequencing of the xylose isomerase and xylulose kinase genes of Escherichia coli. 总被引:5,自引:3,他引:5
下载免费PDF全文

A 4.2-kilobase-pair fragment of the Escherichia coli chromosome which contains the genes for xylose isomerase and xylulose kinase was cloned into plasmid pBR322. The hybrid plasmid (designated pECX14) complements strains deficient in either or both of the two enzymes. Deletion derivatives of pECX14 were used to localize the two genes on the cloned fragment. The entire nucleotide sequence of the cloned fragment was determined. Open reading frames which, if translated, would encode proteins of molecular weights 54,000 and 52,000 were found. These were identified as the isomerase and kinase structural genes, respectively. 相似文献