首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The present work describes a highly precise and sensitive method developed to detect cocaine (COC), benzoylecgonine (BE, its main metabolite) and cocaethylene (CE, transesterification product of the coingestion of COC with ethanol) in human head hair samples. The method was based on an alkylchloroformate derivatization of benzoylecgonine and the extraction of the analytes by solid-phase microextraction (SPME). Gas chromatography-mass spectrometry (GC-MS) was used to identify and quantify the analytes in selected ion monitoring mode (SIM). The limits of quantification and detection (LOQ and LOD) were: 0.1 ng/mg for COC and CE, and 0.5 ng/mg for BE. Good inter- and intra-assay precision was observed. The dynamic range of the assay was 0.1-50 ng/mg. The method is not time consuming and was shown to be easy to perform.  相似文献   

2.
Demonstrating the presence or absence of cocaine (COC) and COC-related molecules in postmortem fluids and/or tissues can have serious legal consequences and may help determine the cause of impairment and/or death. We have developed a simple method for the simultaneous determination of COC and the COC metabolites benzoylecgonine (BE), norbenzoylecgonine (NBE), ecgonine methyl ester (EME), ecgonine (E), and norcocaine (NCOC), as well as anhydroecgonine methyl ester (AEME) (a unique byproduct of COC smoking), cocaethylene (a molecule formed by the concurrent use of COC and ethanol) and their related metabolites, anhydroecgonine (AE), norcocaethylene (NCE), and ecgonine ethyl ester (EEE). This method incorporates a Zymark RapidTrace automated solid-phase extraction (SPE) system, gas chromatography/mass spectrometry (GC/MS) and 2,2,3,3,3-pentafluoro-1-propanol (PFP)/pentafluoropropionic anhydride (PFPA) derivatives. The lower limits of detection ranged from 0.78 to 12.5 ng/mL and the linear dynamic range for most analytes was 0.78-3200 ng/mL. The extraction efficiencies were from 26 to 84% with the exception of anhydroecgonine and ecgonine, which were from 1 to 4%. We applied this method to five aviation fatalities. This method has proven to be simple, robust and accurate for the simultaneous determination of COC and 11 COC metabolites in postmortem fluids and tissues.  相似文献   

3.
A sensitive, specific and precise HPLC–UV assay was developed to quantitate cocaine (COC) and its metabolites benzoylecgonine (BE), norcocaine (NC) and cocaethylene (CE) in rat plasma. After adding 50 μl of the internal standard solution (bupivacaine, 8 μg/ml) and 500 μl of Sørensen's buffer (pH 6) to 100 μl of rat plasma sample, the mixture was extracted with 10 ml of chloroform. The organic layer was transferred to a clean test tube and was evaporated under nitrogen. The residue was reconstituted in 100 μl of mobile phase and 35 μl was injected onto the HPLC column. The mobile phase consisted of methanol–acetonitrile–50 mM monobasic ammonium phosphate (5:7:63, v/v/v) and was maintained at a flow-rate of 0.4 ml/min. Separation of COC and its metabolites was achieved using a Supelcosil ABZ+plus deactivated reversed-phase column (250×2.1 mm I.D., 5 μm). Calibration curves were linear over the range of 25–5000 ng/ml for COC and its three metabolites. The absolute extraction efficiencies for BE, COC, NC, CE and bupivacaine were 56.6%, 78.6%, 61.1%, 76.4% and 67.0%, respectively. COC and its metabolites were stable in mobile phase for 24 h at room temperature and in rat plasma for 2 weeks at −20°C. The limits of detection for BE, COC, NC and CE were 20, 24, 15 and 12.9 ng/ml, respectively. These values correspond to 0.70, 0.84, 0.525 and 0.452 ng of the according compound being injected on column. The within-day coefficient of variation for the four compounds ranged from 3.0% to 9.9% while the between-day precision varied from 3.6% to 14%. This method was used to analyze rat plasma samples after administration of COC alone and in combination with alcohol. The pharmacokinetic profiles of COC and its metabolites in these rats are also described.  相似文献   

4.
We describe the development and validation of a method for the simultaneous quantification of 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), 3-hydroxy-4-methoxymethamphetamine (HMMA), 3-hydroxy-4-methoxyamphetamine (HMA), 3,4-methylenedioxyethylamphetamine (MDEA), methamphetamine (MAMP) and amphetamine (AMP) in sweat. Drugs were eluted from PharmChek sweat patches with sodium acetate buffer, extracted with disk solid phase extraction and analyzed using GC/MS-EI with selected ion monitoring. Limits of quantification (LOQ) for MDMA, MDEA, MAMP and AMP were 2.5 ng/patch, and 5 ng/patch for MDA, HMA and HMMA. This fully validated procedure was more sensitive than previously published analytical methods and permitted the simultaneous analysis of multiple amphetamine analogs in human sweat.  相似文献   

5.
In recent years, remarkable advances in sensitive analytical techniques have enabled the analysis of drugs in unconventional samples, such as sweat. In a study conducted with cigarettes smokers and nonsmokers, PharmChek sweat patches were applied to 29 subjects for 72 h. Nicotine was extracted in 5 ml methanol in the presence of 200 ng nicotine-d4, used as internal standard. After 20 min agitation, the methanolic solution was evaporated to dryness in the presence of 10 μl octanol to ensure nonvolatility of nicotine. Nicotine was determined using gas chromatography coupled to mass spectrometry after separation on a 30-m capillary HP5 MS column. The assay was linear in the range 50–2500 ng/patch, with an extraction recovery of 76±5%. Limit of detection was 10 ng/patch. Nicotine concentrations in sweat were not detected for the nonexposed nonsmokers (n=8), 87 to 266 ng/patch for the passive smokers (n=6) and 150 to 2498 ng/patch for the smokers (n=15). This study demonstrated a useful application of the sweat patch for monitoring tobacco exposure.  相似文献   

6.
A sensitive GC/CI/MS/MS method was developed for the simultaneous determination of cocaine (COC), anhydroecgonine methylester (cocaine pyrolysis product, AEME), ecgonine methylester (cocaine enzymatic hydrolysis product, EME) and cocaethylene (cocaine with ethanol trans-esterification product, COET) in human hair samples. After acid hydrolysis, hair samples were extracted with an automated solid phase extraction (SPE). The analysis of cocaine and its three metabolites was performed using an ion-trap spectrometer in positive chemical ionization with isobutane as gas reagent. The procedure was validated. Weighted linear regression was found appropriate in a concentration range of 0.10-5.00 ng/mg for AEME, 0.05-5.00 ng/mg for COC, EME and COET. The limit of detection was estimated at 0.005 ng/mg for COC and COET, at 0.025 ng/mg for EME, and at 0.050 ng/mg for AEME. Method performance was evaluated in terms of trueness and precision using quality control (QC) samples over the investigated ranges. Method selectivity and robustness were also demonstrated.  相似文献   

7.
In the present work, we assessed the suitability of sodium and potassium physiologically present in sweat, as internal reference allowing to re-calculate the corresponding volume of sweat collected on a PharmChek Patch. A method using capillary electrophoresis with indirect ultra-violet detection was developed for the determination of sodium and potassium in sweat. The concentrations determined in specimens collected from 12 females and 10 males, using a home-made system composed of polypropylene copolymer bag, were 1039+/-89 mg/L and 711+/-45 mg/L for sodium, and 489+/-293 mg/L and 474+/-196 mg/L for potassium, respectively. In parallel, for seven females and eight males, the comparison of the volume of sweat collected in the same way to the re-calculated volume of sweat accumulated in a patch using sodium as internal standard, gave an average agreement of 98.4+/-15.0%. Results demonstrated the usefulness of sodium as internal standard to determine the volume of sweat accumulated in a patch, and confirm the suitability of PharmChek patch for the collection and determination of cations in sweat.  相似文献   

8.
A method based on poly (methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith microextraction (PMME) and field-enhanced sample injection (FESI) pre-concentration technique was proposed for sensitive capillary electrophoresis-ultraviolet (CE-UV) analysis of ephedrine (E) and pseudoephedrine (PE) in human plasma and urine. The PMME device consisted of a regular plastic syringe (1 mL), a poly (MAA-EGDMA) monolithic capillary (2 cm x 530 microm I.D.) and a plastic pinhead connecting the former two components seamlessly. The extraction was achieved by driving the sample solution through the monolithic capillary tube using a syringe pump, for the desorption step, an aliquot of organic solvent, which normally provided an excellent medium to ensure direct compatibility for FESI in CE, was injected via the monolithic capillary and collected into a vial for subsequent analysis by CZE. The best separation was achieved using a buffer composed of 0.1M phosphate electrolyte (pH 2.5) and 10% acetonitrile (v/v). The combination of both pre-concentration procedures allowed the detection limits of the analytes down to 5.3 ng/mL and 8.0 ng/mL in human plasma and urine, respectively. Excellent method of reproducibility was found over a linear range 50-5000 ng/mL in plasma and urine sample. Plasma and urine samples from volunteers receiving pseudoephedrine have also been successfully analysed.  相似文献   

9.
In the present work, a method was developed aiming at the serial detection of tetrahydrocannabinol (THC), amphetamine, methamphetamine, cocaine and ethanol in saliva. Saliva samples were submitted to an initial headspace procedure for ethanol determination by gas chromatography/flame ionization detector (GC-FID). After this step, two consecutive solid-phase micro-extractions (SPME) were carried out: THC was extracted by submersing a polydimethylsiloxane fiber (100 micro m) in the vial for 20 min; amphetamine, methamphetamine and cocaine were subsequently extracted after alkalinization. Derivatization of the amphetamines was carried out directly in the solution by adding 2 micro l of butylchloroformate. Gas chromatography-mass spectrometry (GC-MS) was used to identify the analytes in selected ion monitoring (SIM) mode. Confidence parameters of validation of the method were: recovery, linearity, intra- and inter-assay precision as well as limits of detection and quantification of the analytes. The limits of quantification (LOQ) obtained were: ethanol (0.010 g/l); amphetamine (5.0 ng/ml); methamphetamine (0.5 ng/ml); cocaine (5 ng/ml) and THC (5 ng/ml). The method proved to be highly precise (coefficient of variation<8%) for all detected substances.  相似文献   

10.
A robust and validated liquid-liquid extraction LC-MS/MS method was developed for population pharmacokinetic analysis and therapeutic drug monitoring of risperidone and the enantiomers of its major active metabolite (+)-and (-)9-hydroxyrisperidone in pediatric patients. The method was rapid, sensitive and used a low sample amount (200 microL), which is very desirable for the pediatric population. The assay was validated from 0.2 to 50 ng/mL in plasma for all analytes. LLOQ for all analytes was 0.2 ng/mL. The extracts were analyzed by normal phase LC-MS/MS. The sample run time was 8 min. Intra- and interday precision for all analytes was < or =6%; method accuracy was between 89 and 99%. Additional experiments were performed to analyze matrix effects and identify a proper internal standard for each analyte. The validated method was used to study risperidone and its enantiomer metabolites in plasma as part of a population pharmacokinetic study in pediatric patients with pervasive developmental disorder (PDD).  相似文献   

11.
Mural and cumulus granulosa cells synthesize hyaluronic acid (HA) and expand in vitro in response to follicle-stimulating hormone and a soluble factor(s) produced by fully grown oocytes. In the present study we examined HA synthesis and extracellular matrix organization by the two cell populations in vivo during the preovulatory period. After injection of human chorionic gonadotropin into pregnant mares' serum gonadotropin-primed animals, a progressive increase in HA synthesis was observed by the cumulus cell-oocyte complex (COC), and by the mural granulosa cells adjacent to the antrum (antral granulosa cells). The outermost layers of mural granulosa cells (peripheral granulosa cells) did not synthesize HA. Net HA synthesis was approximately 4 pg/cell for COCs isolated after full expansion induced either in vivo or in vitro, whereas the total HA content and cell number in the ovulated COC (approximately 11 ng HA and approximately 3000 cells per COC) were about threefold higher than for COCs expanded in vitro (approximately 4 ng HA and approximately 1000 cells per COC). The increased cell content of ovulated COCs appears to be primarily the result of inclusion of proximal mural granulosa cells which synthesize HA in response to the oocyte factor(s) and become incorporated in the expanded COC extracellular matrix mass. Media conditioned by oocytes enclosed in the cumulus cell mass (intact COCs) contained only 10-20% of the HA-stimulatory activity of media conditioned by an equal number of isolated oocytes when tested on mural granulosa cell cultures. Further, HA-stimulatory activity of media conditioned by isolated oocytes was dramatically reduced (approximately 70%) by preincubation for 5 hr with cumulus cells compared to preincubation in the absence of cells. The results suggest that differences in HA synthesis between subregions of membrana granulosa depend on a diffusion gradient of the oocyte factor(s).  相似文献   

12.
A specific and sensitive method for determination of intracellular ciclosporin A (CsA) and its six main metabolites AM1, AM9, AM1c, AM1c9, AM19 and AM4N, in isolated T-lymphocytes and whole blood is described. T-lymphocytes were separated from whole blood using Prepacyte. The analytes were extracted and purified from isolated lymphocytes and whole blood by protein precipitation followed by solid-phase extraction (SPE). The analytes and the internal standard, ciclosporin C (CsC), were separated on a reversed phase C8 column (30 mm x 2.1mm, 3 microm) with a 10 mm x 2 mm, 5 microm Drop-In Guard Cartridge, using gradient elution chromatography and tandem ion trap mass spectrometry detection. The method has been validated in accordance with FDA guidelines and showed linear range from 0.25 to 500 ng/mL for CsA, 0.5 to 500 ng/mL for AM1, AM9 and AM19, 1 to 500 ng/mL for AM4N, AM1c and AM1c9 in intracellular matrix, and 2.5 to 3000 ng/mL for all analytes in whole blood. The applicability of the method is shown on patient samples.  相似文献   

13.
The collection of oral fluid for drug testing is easy and non-invasive. This study developed a drug testing method using ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) in selected-reaction monitoring (SRM) mode. We tested the method on the analysis of four opiates and their metabolites, five amphetamines, flunitrazepam and its two metabolites, and cocaine and its four metabolites in oral fluid. 100-μL samples of oral fluid were diluted with twice the amount of water then spiked with isotope-labeled internal standards. After the samples had undergone high-speed centrifugation for 20 min, we analyzed the supernatant. The recovery of the sample preparation ranged from 81 to 108%. We compared the performance of electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). The ion suppression of most analytes on ESI (28-78%) was lower than that of APCI and APPI. A post-column flow split (5:1) did not reduce the matrix effect on ESI. Direct APPI performed better than dopant-assisted APPI using toluene. ESI, APCI and APPI limits of quantitation mostly ranged from 0.11 to 1.9 ng/mL, 0.02 to 2.2 ng/mL and 0.02 to 2.1 ng/mL, respectively, but were much higher on amphetamine and ecgonine methyl ester (about 2.7-4.7 ng/mL, 8.7-14 ng/mL, and 10-19 ng/mL, respectively). Most of the bias percentages (accuracy) and relative standard deviations (precision) on spiked samples were below 15%. This method greatly simplifies the process of sample preparation and shortens the chromatographic time to only 7.5 min per run and is able to detect analytes at sub-ppb levels.  相似文献   

14.
Human eccrine sweat devoid of epidermal protein contamination was collected from palms, soles, and different sites on the trunk. Interleukin 1 alpha (IL 1 alpha) and interleukin 1 beta (IL 1 beta) content were analyzed for immunoreactivity by enzymo-immunoassay and immunoblotting and for bioactivity by the stimulation of prostaglandin E2 (PGE2) production in human dermal fibroblasts. The bioassay was validated by using blocking antibodies against IL 1 alpha and beta. All sweat samples were found to contain significant amounts of immunoreactive and biologically active IL 1. The immunoreactive forms were at 17 kDa as shown by immunoblotting analysis, indicating that they were mature (secreted), undegraded IL 1 peptides. Whereas IL 1 alpha was detectable in sweat samples obtained from both truncal and palmo-plantar regions, IL 1 beta was only detectable in the sweat of palms and soles (IL 1 alpha/beta ratio greater than 700 in trunk and 5.4 in palms and soles) indicating a site-dependent difference in the excretion of the two IL 1 molecules. IL 1 concentration was high in spontaneous (IL 1 alpha, 3.7; IL 1 beta, 0.3 ng/mL) and pilocarpine induced sweat (IL 1 alpha, 3.9; IL 1 beta, 1.2 ng/mL), and it was much increased during jogging and sauna (IL 1 alpha, 22.6; IL 1 beta, 3.3 ng/mL). This does not appear to represent an excretory process aimed at clearing blood IL 1, but rather a stress-induced increased production of IL 1 by sweat gland cells.  相似文献   

15.
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed for the determination of serial chiral novel anticholinergic compounds of phencynonate in rat plasma. After a simple protein-precipitation using methanol, the post-treatment samples were separated on a CAPCELL UG120 column with a mobile phase of a mixture of methanol and water (35:65) containing 0.1% formic acid. The serial chiral analytes and internal standard (IS) were all detected by the use of selected reaction monitoring mode (SRM). The method of all serial chiral analytes developed was validated in rat plasma with a daily working range of 0.5-100 ng/ml with correlation coefficient, R(2) > or = 0.99 and a sensitivity of 0.5 ng/ml as lower limit of quantification, respectively. This method was fully validated for the accuracy, precision and stability studies for all serial chiral analytes. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of serial chiral novel anticholinergic compounds of phencynonate in rat plasma.  相似文献   

16.
A GC method is described for the determination of xanomeline (LY246708 tartrate) and selected metabolites in rat and monkey plasma. The analytes, including an internal standard, were extracted from plasma at basic pH with hexane. The organic extract was evaporated to dryness and the residue was reconstituted in hexane. The analytes were separated from metabolites and endogenous substances using a DB1701 capillary column. The analytes were detected using nitrogen-phosphorus detection (NPD). The limit of quantitation was determined to be 8 ng/ml, and the response was linear from 8 to 800 ng/ml. The method has been successfully applied to rat and monkey samples pursuant to the development of xanomeline as an agent for the symptomatic treatment of Alzheimer's disease.  相似文献   

17.
A comprehensive method was developed for the simultaneous analysis in human breast milk of 12 synthetic musks, five nitro musks, six polycyclic muks and one macrocyclic musk; as well as one musk metabolite and triclosan. The target analytes were freeze dried and extracted using the accelerated solvent extraction (ASE) procedure. The extracts were further purified by gel permeation chromatography (GPC) and florisil solid-phase extraction (SPE) and then analyzed by gas chromatography tandem mass spectrometry (GC-MS/MS). Recoveries of the analytes based on the isotopic internal standard correction ranged from 82.4% to 112%, with relative standard derivations less than 20%. The method quantification limits (MQLs) were 0.6-5.4 ng/g lipid. The analytes were detected in human breast milk samples and ranged from 11.7 to 308.6 ng/g lipid.  相似文献   

18.
A sensitive method for the determination of Cloretazine (VNP40101M) and its metabolite (VNP4090CE) with an internal standard (ISTD) in human plasma was developed using high-performance liquid chromatographic separation with tandem mass spectrometric detection. Acidified plasma samples (500 microL) were prepared using solid phase extraction (SPE) columns, and 25 microL of the reconstituted sample was injected onto an Ascentis C18 HPLC column (3 microm, 5 cmx2.1 mm) with an isocratic mobile phase. Analytes were detected with an API-3000 LC-MS/MS System at unit (Q1) and low (Q3) resolution in negative multiple reaction monitoring mode: m/z 249.0 (precursor ion) to m/z 114.9 (product ion) for both Cloretazine (at 3.64 min) and VNP4090CE (at 2.91 min), and m/z 253.0 (precursor ion) to m/z 116.9 (product ion) for the ISTD. The mean recovery for Cloretazine (VNP40101M) and its metabolite (VNP4090CE) was greater than 87% with a lower limit of quantification of 1.0 ng/mL for Cloretazine (S/N=9.7, CV相似文献   

19.
A sensitive, selective and rapid liquid chromatographic/electrospray ionization tandem mass spectrometric assay was developed and validated for the simultaneous quantification of 16-dehydropregnenolone (DHP) and its five metabolites 4,16-pregnadien-3, 20-dione (M(1)), 5-pregnene-3beta-ol-20-one (M(2)), 5-pregnene-3beta, 20-diol (M(3)), 5-pregnene-3beta-ol-16, 17-epoxi-20-one (M(4)) and 5,16-pregnadien-3beta, 11-diol-20-one (M(5)) in rabbit plasma using dexamethasone as internal standard (IS). The analytes were chromatographed on Spheri-5 RP-18 column (5 microm, 100 mm x 4.6 mm i.d.) coupled with guard column using acetonitrile:ammonium acetate buffer (90:10, v/v) as mobile phase at a flow rate of 0.65 ml/min. The quantitation of the analytes was carried out using API 4000 LC-MS-MS system in the multiple reaction monitoring (MRM) mode. The method was validated in terms of linearity, specificity, sensitivity, recovery, accuracy, precision (intra- and inter-assay variation), freeze-thaw, long-term, auto injector and dry residue stability. Linearity in plasma was observed over a concentration range of 1.56-400 ng/ml with a limit of detection (LOD) of 0.78 ng/ml for all analytes except M(3) and M(5) where linearity was over the 3.13-400 ng/ml with LOD of 1.56 ng/ml. The absolute recoveries from plasma were consistent and reproducible over the linearity range for all analytes. The intra- and inter-day accuracy and precision method were within the acceptable limits and the analytes were stable after three freeze-thaw cycles and their dry residues were stable at -60 degrees C for 15 days. The method was successfully applied to determine concentrations of DHP and its putative metabolites in plasma during a pilot pharmacokinetic study in rabbits.  相似文献   

20.
An on-line size exclusion chromatography (SEC)-solid-phase extraction (SPE)-capillary electrophoresis (CE) system using a Tee-split interface has been developed for the analysis of peptides in biological fluids. The SEC column fractionates the sample by molecular size and the low-molecular-weight fraction, which contains the peptides, is directed to a C(18) SPE microcolumn, where the peptides are trapped and concentrated. The SPE column is desorbed with 425 nL acetonitrile and the effluent is sent to the Tee-split interface, which hydrodynamically splits (1:40) the flow and, thus, allows appropriate injection of analytes into the CE system. The performance of the system is investigated by the analysis of enkephalins in cerebrospinal fluid (CSF). It is demonstrated that the SEC step efficiently removes potentially interfering proteins, permitting reproducible SPE and CE. The total system provides efficient separations of the enkephalins with plate numbers up to 100,000. Concentration limits of detection (S/N = 3) for the peptides are about 100 ng/mL for injection of 20 microL spiked CSF samples. Plots of enkephalin peak areas versus concentration showed good linearity over the 0.25-10 microg/mL range (R2 > or = 0.985). Repeatability of migration time and peak area was within 2% and 10% R.S.D., respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号